
Hardware Security
Prof. Debdeep Mukhopadhyay

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 21
Hardware for Elliptic Curve Cryptography – III

So, welcome to this class on Hardware Security. So, today we shall be continuing with

our discussions on Elliptic Curve Crypto systems and there implementations.
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So, we were discussing in the last  class about the Montgomery’s technique of scalar

multiplication. In particularly today we will be discussing about how to perform a fast

scalar multiplication with only one coordinate system that is only x coordinates. So, we

basically do not need the y coordinates and that is an very efficient way of doing this

operation.

We shall be talking about projective transformations to reduce the inversion which are

very  costly  in  terms  of  computations.  We shall  be  looking  into  another  alternative

technique which is also adopted by some designers which is called as a mixed coordinate

systems, where one coordinate is kept in projective coordinates whereas, the other one is

kept  in  affine  coordinates.  And  then  finally,  we  shall  be  trying  to  talk  about

parallelization techniques. So, let us see what we can cover.
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So basically like we were discussing about this form of the curve which is defined over

characteristic 2 fields where x and y are elements of GF 2 power of m cross GF 2 power

of m. And, we basically stopped in the last class about the by noting that the x coordinate

of the doubling operation that is when we are doubling P and P that is you are computing

2 P, then the x coordinate of 2 P depends only upon the x coordinates actually of P. So, it

does not depend upon the y coordinates of P.

So, therefore, that is an important observation and we also discussed about that that we

can potentially write the, or perform the computation in a manner. So, that we can only

do we can also do the addition in a similar way with only the x coordinates. So, that

essentially is the basic crux of Montgomery’s method.
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And  let  me  introduce  that.  So,  in  Montgomery’s  technique  the  objective  is  still  to

compute the scalar multiplication. So, you have got a scalar k and you would like to

calculate k into P. So, k is your scalar which is say you know like the binary expansion of

that  is  denoted by this  k l  minus 1 to k 0 and I  want to  calculate  k into P. So, the

technique is that we introduce 2 registers P 1 and P 2 such that P 1 is P and P 2 is 2 P ok.

So, the idea is that P 2 minus P 1 if I calculate right P 2 minus P 1 therefore, that is 2 P

minus P. So, that is P ok. 

So, what we try to do is we try to do this compilation in this ladder in a manner such that

2 P minus like P 2 minus P 1 is always equal to P. So, that remains an invariant in this

computation. So, if you see like how you can do that is as follows very simple. I want to

compute from again you know like assume that l minus 1 is 1. So, this is again from the

MSB we are computing. So, if I compute from the MSB I am assuming l minus 1 or k l

minus 1 to be 1.

So, let me try to [process/processing] start processing from k l minus 2. So therefore,

right the k i over which I am basically processing at a current iterations like the iteration

will vary from l minus 2 down to 0. So, at some i-th stage if the k i bit is 1 then I do an

addition in the registered P 1 and I do a doubling in the register P 2 ok. Alternatively, if

the bit is 0 then I do an addition in P 2 and I do a doubling in P 1 ok. 
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So, if you do that then the first thing which you have observe is that P 2 minus P 1

remains an invariant because, you see P 2 minus P 1 is always equal to 2 P 2 minus P 1

minus P 2. And therefore, it does not change ok. Likewise if you calculate P if it enters

this part of the loop then P 2 minus P 1 is still equal to P 2 plus P 1 minus 2 P 1 which is

again equal to P 2 minus P 1. So, it does not is still does not change ok. 

So therefore, the idea is that I mean the idea is that I mean in both this computations P 2

minus P 1 remains an invariant. And, since initialize I initialize P 2 minus P 1 to P it

remains P throughout this computation; at every stage of the iteration P 2 minus P 1 is the

base point P ok. So therefore, right what is a advantage of this? So, if I want to really

understand that then we have to go across like some results that we will develop one

after the other and try to see how we can do this computation ok. 

The  first  thing  is  let  us  see  the  correctness  before  I  go  into  that  or  get  into  the

implementation  aspects.  So,  suppose  I  want  to  calculate  7  P again  taking  the  same

example as we were talking in the last class. So therefore, I have got 1 1 1 as my binary

expansion of 7. So, I initialize P 2 to 2 P and P 1 to P and therefore, right if the bit is 1 I

do an addition in P 1. So, basically I add P with 2 P and I get 3 P and in P 2 I do a

doubling.

So, P 2 becomes 4 P ok, likewise when the bit is 1 again I mean in next iteration as well I

add P P I add 3 P with 4 P. So, I get 7 P and I double 4 P so, I get 8 P. So, you can see that



I still get 7 P which is my objective, if the expansion was for 6 so, this will be 6 ok. So, if

it was 6 then I would I I have 1 1 0. So, again I initialize P and 2 P for P 1 and P 2

respectively and since this bit is 1 I essentially do an you know like I do an addition. So,

I do an addition in P 1 that is P plus 2 P is 3 P I do a doubling which is 4 P, but since is

bit is 0 now I will do an addition in P 2 ok.

So therefore, I add 3 P is 4 P I get 7 P, but I double essentially P 1. So, if I double P 1

then from 3 P I get 6 P and note that P 1 is a value or the final result is stored in P 1. So,

it correctly computes 6 P ok. So, you can also prove this in a very generic manner about

the correctness, but intuitively we understand this algorithm works quiet ok. But, then

what is a advantage if I when you are doing the computation in this manner. 
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So, the idea is  that  you know like this  was essentially  one of the first  results  which

actually tells you how to do elliptic curve scalar multiplication without storing any result

ok. Previously like when you wanted to compute say 7 P often one technique was that

you stored powers of 2 as scalars. So for example, I stored 2 P 4 P 8 P and so on and then

when I am doing and computation I run time combine this results and I get return the

result ok. But, in this case I can do it very efficiently just by compunations without any

explicit  storage and most  importantly  I  operate  in  the Montgomery ladder  in  only 1

coordinate not in 2 coordinates ok. 



So, first result that is of in significance here is this that is if P 1 is x 1 comma y 1 and P 2

is x 2 comma y 2 then the then the then the x coordinate of P 1 plus P 2 is x 3 and it can

be computed by this equation. So, this essentially we can work out this result. So, this

result essentially we will derive or we will essentially derive from you know like from

this equation; that means, from this addition equation and of course, with some more

simplifications

So, let us try to you know like do this computation. So, basically like what we essentially

can do here is we can start ok.
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So, let us take for example, the points x 1 comma y 1 say x 1 comma y 1 and x 2 comma

y 2 as the 2 points ok. So, I want to add them. So therefore, right by using the equation

that we had essentially we have got x 3 equal to y 1 plus y 2 divided by x 1 plus x 2

whole square ok. I am just rewriting the equation that we had y 1 plus y 2 divided by x 1

plus x 2 plus x 1 plus x 2 plus a right.

So, now if I simplify this then in the denominator I have got x 1 plus x 2 whole square

and in the numerator since, its characteristic 2 right all these elements x 1 y 1 x 2 y 2 are

characteristic GF 2 power of m elements. So therefore, I will have y 1 square plus y 2

square plus this x 1 plus x 2 into y 1 plus y 2. So therefore, I can write x 1 y 1 plus x 1 y

2 plus x 2 y 1 plus x 2 y 2 plus some more terms. That is if I simplify this would be



something like x 1 cube plus x 1 square x 2 plus a x 1 square plus x 2 square x 1 plus x 2

cube plus x 2 square a ok. So, this is my result of the computation ok. 

So, maybe we can verify this. So, note the fact that P 1 comma that that is x 1 comma y 1

and x 2 comma y 2 are points on the curve ok. So, since they are point on the curve

therefore, I can write that y 1 square plus x 1 y 1 plus x 1 cube plus a x 1 square plus b is

equal to 0. And, likewise and y 2 square plus x 2 y 2 plus x 2 cube plus a x 2 square plus

b is equal to 0 ok. 

So therefore, what we have if I write here right and arrange the terms then and keep the

denominator as x 1 plus x 2 whole square in a numerator we will have x 1 y 2. So,

basically keeping this terms x 1 y 2 plus x 2 y 1 plus x 2 y 1 and the remaining 2 parts

are nothing, but these things. Like y 1 square plus x 1 y 1 plus x 1 cube plus a x 1 square

plus b plus y 2 square plus x 2 y 2 plus x 2 cube plus a x 2 square plus b plus x 1 square

x 2 plus x 2 square x 1 ok.

So, you can note that I have just added the b here and I have also kind of adjusted the b

here. So, because their characteristic 2 so, we can do that and this essentially and this

part and this part essentially are both 0 ok. So therefore, right finally, I have got this

result where I can write the numerator. So, the numerator is x 1 plus x 2 whole square,

but in the numerator I have got x 1 y 2 plus x 2 y 1 plus x 1 square x 2 plus x 2 square x

1 ok. So, these is are essentially nothing, but the addition operation and is essentially that

is the you know like the result that we have here and that essentially is very much this

equation ok. 
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So, now once we have this equation we can actually you know like go to the next result

which essentially tells you that now with x; remember that x comma y is suppose the

point for P ok, the I mean is a point P. When you can actually like the doubling x 3 you

can also write the addition x 3 only in terms of x 1 x 2 and x ok. So, you know note that

x is pre determined pre is already known and therefore, the entire computation is divide

of any y coordinates.

So, this result is also can also be derived quite easily and essentially we can you know

like we can see this derivation also we can also do this derivation in a similar fashion ok.

So, let us try to do this derivation.
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So, to start with I essentially note that the point P is nothing, but P 2 minus P 1 ok. So,

this point P is P 2 minus P 1 which means that x comma y is nothing, but x 2 comma y 2

plus minus P 1 ok. So, what is minus P 1? So, remember that we derive this. So, if x 1 y

1 is P 1 then minus of P 1 is nothing, but x 1 comma x 1 plus y 1. So, if this is P 1 this is

your minus P 1 ok. So therefore, this is nothing, but addition with x 1 comma x 1 plus y

1 ok.

So therefore, now if I apply the previous result that we derived then I can write x as the

remember it is x 1 plus x 2 whole square. But, the numerator right is x 1 y 2 plus x 2 into

x 1 plus y 1 plus x 1 x 2 square plus x 1 square x 2 ok. And, also note that and we have

already know that P 3 is the result of adding P 1 and P 2 that is what I am trying to

derive.

So therefore, right trivially I can write that x 3 is equal to x 1 and again I can write the

similar stuff for x 3 and I can write this as x 1 y 2 plus x 2 y 1 plus x 1 square x 2 plus x

1 x 2 square ok. So that means, that if I add up these 2 parts or if I add up x with x 3 then

you note that all the terms gets cancelled out except x 1 x 2 divided by x 1 plus x 2 whole

square ok. 

So, therefore, right I can write x 3 as nothing, but x plus x 1 x 2 divided by x 1 plus x 2

whole square. So, here I mean you see that I need to do an inversion operation that is I

need to calculate 1 by x 1 plus x 2, but then I need to multiply with x 2 and with x 1. So,



I need to do 2 multiplications. So, one way of kind of optimizing it further would be to

write this as x plus x 1 by x 1 plus x 2 plus x 1 divided by x 1 plus x 2 whole square ok.

You see that if you do that, then you are doing one inversion and one multiplication with

x 1, but essentially it is the same computation that you are doing ok. 

So therefore, this is the final form that you will take and you see again that we have

completely  eliminated  the  y  coordinate  and  essentially  are  operating  only  on  the  x

coordinates ok. So, with this right I mean we can now get back to the slide and we can

see that essentially that is pretty much the equation which is written over here x plus x 1

by x 1 plus 2 whole square plus x 1 by x 1 plus x 2 ok. So, likewise right you can

actually you know like.
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So, but you see that finally, when you are doing the computation you essentially have to

come and final  return the output  point  that  is  x 3 comma y 3.  So,  you need to still

compute y 3 ok. And so therefore, at end of the computation you have to essentially

some way some how you know like have that information of y and using this result 3 we

can do that. So, that is how it is says that if P is equal to x comma y and P 1 is x 1 comma

y 1 and P 2 is equal to x 2 comma y 2 be the elliptic points ok; assume that P 2 minus P 1

is equal to P and x is not zero ok. Then the y coordinate of P 1 can be expressed in terms

of P and the x coordinates of P 1 and P 2 as follows ok.



So, you see again using the result I have obtained; so, so remember that P 1 is my final

result right in the Montgomery ladder P 1 is the final result. So, therefore, the x 1 of P 1

is my important x 1 is my is the important information. What I am showing in the result

is that from x 1 and from the other information like x 2 for example, you can actually

pretty much compute y 1. You can you can compute y 1 and once you have x 1 and y 1

you  have  the  coordinate  you  have  the  result  basically.  So,  I  am  not  going  to  the

derivation of these results and I leave it to as an exercise to verify that this is correct ok. 
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So, now if I put all these things together ok; so, what you see here is that I have pretty

much all  the pieces  now to compute the scalar multiplication algorithm in the affine

coordinate system. So therefore, right this is my scalar and now what I can basically

doing is I am doing is computation only using x coordinates. So, I basically initialize x 1

to remember only x 1 was supposed to initialize to P and that is equal to x. And, x 2 was

supposed to initialize to 2 P and this is the x coordinate of 2 P. So therefore, I have got x

square plus b by x square to initialize x 2 ok.

So, now from l minus 2 to 0 what are the steps that I have to do remember that if the k bit

is 1, then I do an addition in P 1 and I do a doubling in P 2. So, that you can easily

understand by this that is I do a computation like t equal to x 1 by x 1 plus x 2 and that is

an  intermediate  computation  that  I,  do  stored  in  a  temporary  variable  t.  And  then I

compute x 1 which is nothing, but the x coordinate of P 1 plus P 2 ok. And therefore,



right I get x 1 plus t square plus t as my resultant x coordinate ok; x 2 stores a doubling

right.

So therefore, x 2 stores a doubling of P 2. So therefore, I can compute x 2 square plus b

by x 2 square ok. Likewise if the k bit is 0 then I just do the opposite I do a doubling in x

1. So therefore, I get x 1 equal to x 1 square plus b by x 1 square and in x 2 I calculate x

plus t square plus t ok. So, note that once you have done this computation finally, you get

the result which is x 1, but somehow I need to calculate y 1 and for this I as a apply

result 3. So, what I do is I calculate say x 1 plus x I calculate x 2 plus x and I denote that

as r 1 and r 2. And, then I apply result 3 to get the corresponding y coordinate and then I

return x 1 comma y 1 as my resultant output.

So, note that in this computation or in this loop right I have been operating only on x

coordinates, there are no y coordinates. So, basically you kind of you know like save lot

of  computations  how  to  save  lot  of  resources  potentially,  if  you  think  you  have  a

hardware design. So, let us calculate the cost of course, you can calculate the number of

inversions multiplications additions and squarings which are required. Most importantly

let us see about the number of inversion because, inversions as you have seen are pretty

complex in in composite fields I mean in (Refer Time: 20:32) fields ok.

So therefore, right here where you see the when you are compute in number of inversion

you see that there is one inversion which is require at the beginning, when you are doing

in initialization. So, that is one extra inversion which you have to do. Inside the loop also

you are doing 2 inversions you are always doing this inversion and you are either doing

this or you are either doing this ok. So therefore, there are 2 inversions in the loop and

the l minus 2 iterations in the loop.

So therefore, the number of inversions compute 2 into l minus 2 plus 1 ok. Likewise you

have  got  multiplications  additions  and  squarings  you  can  essentially  verify  that  this

results are indeed correct ok. And, essentially you what you do of course, want is to

reduce the number of computations. But, in a plane form a plain vanilla format this is the

number of computations which you have to do ok. 
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So, now there is I mean what the designers wanted to do is they wanted to reduce the

number of costly inversions. Because, inversions are pretty complex and typically as a

thumb rule right you will see that one inversion is equivalent to roughly 7 or at least

more than 5 multiplications. So therefore, right what we would like to do is way develop

techniques so, that we can optimize these computations. So, one of the techniques which

is very powerful in this context is what is called as to go for a 3 coordinate system.

So, in affine coordinates what we have till now working on, we have got 2 coordinated x

and y. In  projective  coordinates  as  it  is  called  we have  got  3  coordinate  system so,

without x y and z ok. So therefore, right what we say is that we if you are given an you

know like 2 triples like x 1 y 1 z 1 and x 2 y 2 z 2, then they are said to be equivalent. If

there exists a non-zero element lambda which also belongs to the finite field such that x

1 comma y 1 comma z 1 is nothing, but lambda x 2 comma lambda y 2 comma lambda z

2 ok. So, the equivalence class is often define only by ratios like x is to y is to z ok. 

So therefore, right I mean let us see about are how we can apply this technique to reduce

the number of computations ok. The basic idea is that you have got a two-dimensional

projective space and over K and is given by the equivalence class of triples x comma y

comma z with x y z in K. And, at least one of x y z which is non-zero then and this is the,

you know like definition that two triples are essentially equivalent. So, this is how you

relate two such points ok. 
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So, now I mean how do you apply them so, the that is most important. So therefore, right

if so, what we do is typically what we basically take the affine coordinates like x comma

y and transform that into a projective domain in the projective domain. 

So, what do I do is that I basically you know like write as x by z the x coordinate and the

y coordinate as y by z this is you know there are many projective coordinate systems.

This is one such projective coordinate where, I right say I basically try to do is that if z is

not equal to 0 then I say this ratio x is to y is to z is nothing, but x by z is to y by z is to 1

ok. If z equal to 0 right then that essentially defines the point at infinity. So, if you ever

get z equal to 0 in when you are doing a projective coordinates then; that means, you

have computed the point at infinity ok.

So therefore,  right I  mean let  us try to see how we can do this  computation.  So, of

course, like we have to you know like see the advantages and only if it is advantages

because, there will be some you know like increase in computations also; when you are

converting from the affine coordinates to projective coordinates what you have to see is

at the increase of the cost that you are paying you whether it is giving a benefits ok. So,

the idea the whole idea right whether you should go into projective coordinates  will

define upon your m is to y ratio; that means, the cost of the multiplier compared with

your inversion circuit ok. 
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So, so let us see how we can reduce the number of inversions any more take a more

concrete case. So, in an I hope then this will be become more clear ok. So, in affine

coordinates inverses are very expensive for n greater than equal to 128 each inversion

requires  around  7  multipliers  in  hardware  designs  ok.  So,  one  such  one  popular

projective coordinate system is what is called as the LD coordinate  system or Lopez

Dahab projective coordinates. So, what is done in this coordinates systems is that if I

have got a projective coordinate like X Y and Z and Z is not equal to 0 which means is a

finite point if Z equal to 0 then it is the point at infinity, then this maps to X by Z and Y

by Z square ok.

So, the motivation of this is you know like of; so, now what I we what I can do is that

this my relationship; that if I got a projective coordinate X Y comma Z. And, I want to

transforming in to the affine coordinates then I just calculate X by Z and Y by Z square.

The idea is that the motivation as I am saying is to replace inversions by multiplication

operations and then perform one inversion at the end. So; that means, the entire operation

will be only doing on multiplications and additions, but no inversions. But, finally, there

will be 1 one inversion which is required to bring the result back from the projective

coordinates to the affine coordinate systems ok. 



(Refer Slide Time: 25:59)

So,  let  us  you  look  at  the  equations  to  understand  this.  For  example,  this  was  my

equation  which  we  essentially  derived  for  doing  the  doubling  in  the  projective

coordinates ok. So, if you remember what we so, let us take then easy example when we

are considering the doubling for example,  ok. And, the similar thing can be done for

addition as well which I can which I leave for you to as an exercise. 

So, what so, let us see this equation x 3 equal to x 1 square plus b by x 1 square. You can

easily see that if I want to do this computation I need to do one inversion operation

because, I have to do 1 by x 1 I have to calculate this 1 by x 1. So now, let us see how we

can transform this into the projective coordinate system. So, the idea is that what we do

is we have to do this computation. So, the computation that is require to be performed is

x 1 square plus b by x 1 square ok.

So, now my projective my computation that I said using the Lopez Dahab right is X by Z

Y by Z square. This is my you know like if I have got a point say x y z, then and if I want

to write that in the affine coordinates then my representation is X by Z and Y by Z

square. So therefore, right if I just take this and I plug in to this equation then what do I

have, I have got X by Z whole square. So, I am just writing from this X by Z whole

square plus b divided by X by Z whole square right. So, that implies that this is nothing,

but Z square X square in the denominator. And, the numerator is nothing, but X to the



power of 4 plus b Z to the power of 4 right. So, this is your corresponding result in the

you know like in the affine coordinates.

So therefore, right what we will do here is we will actually calculate; so, so now, imagine

that the computation is done in the projective domain ok. So, in the projective domain

you are so, in so, in a basically; so, if you compare it with the affine domain what you are

doing is, in the affine domain you have got x 1 comma y 1. So, actually you have got x 1

in this case which is required. You are basically calculating x 3 from there right; this is

the affine domain. But, in the projective domain now you have got X 1 comma Y 1

comma Z 1 from there you are calculating X 3 and Z 3. Actually you know like as I said

that  we do not  need Y 1,  because of  the because of the advantages  of  Montgomery

ladder. We are basically operating on X 1 Z 1 and calculating X 3 and Z 3 ok. 

So therefore, now if you compare this consider this as your X 3. So, then that implies

because of the you know like if you see the Lopez Dahab representation then this stands

for X 3 and this stands on the denominator stands for Z 3. So that means, now I can

process the numerator and the denominator separately ok. So, this is essentially nothing,

but my X 3 equation and this is my Z 3 question ok. So, likewise right in even if you see

the addition operation when you are doing addition, you also see that you are you can

you can process the X 3 and the Z 3 separately ok. So, there are no inversions which are

required.  So of course, if you compare you see that there are 0 inverses which were

required ok.

So, if you if you see that this is you are cost for doing the doubling and the addition in

the  normal  affine  coordinates.  In  the  projective  coordinates  you see  that  there  is  an

increase in the number of multiplication. For example, you are going from 1 to 4 ok, but

what you are saving is this costly inverse. So therefore, the advantage of going for affine

to projective coordinates in only come if your inverse circuit is complex ok.

So therefore, for smaller fields this may not be so advantageous, but for normal fields or

the  fields  of  you know usual  dimensions  in  elliptic  curves  you have  pretty  large  or

reasonably large you will find that this should be advantages technique. So therefore,

right what we will see in our future discussions is that whenever we are trying to do and

hardware develop an hardware design usually we use the projective coordinate system

because, you want to reduce the number of inversions. 
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So finally, right  I  mean if  you when you when you get  the result.  So now, you can

essentially  do  the  Montgomery  ladder  in  entirely  in  the  projective  coordinates.  So,

essentially I have done exactly nothing, but I just written X 1 equal to x. So, you see I am

just processing only on X and Z’s because I do not need the Y coordinates. Again if it is

just you know like you have return the X 2 to stored the doubling operation and that is

exactly the equations that we derived in the last slide. And, then in the iteration or in the

loop we basically do an addition in X 1 Y 1 X 2 Z 2 and do the doubling.

So,  these are  all  projective  coordinate  additions  and doublings  and likewise  you are

doing addition and doubling in X to Z 2 and in X 1 Z 1 or doubling only in X 1 Z 1 if the

key bit is 0 ok. So finally, right but finally, right when you get the result you have got X

1 Y 2 and X 2 Y 2, but you need to again bring back that to the affine coordinate system

ok.
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And, there you essentially have to do one more inversion because here you see that I

essentially  need  to  bring  the  result  back  to  the  you  know  like  from the  projective

coordinate system to the affine coordinate system. So, I need to do this X 1 by Z 1 and

that is easy to do, but in the y 3 right do few more computations ok. So, the y 3 is again

you know like a manipulation that you have to do depending upon the equation that I

show to you in result 3, which essentially will bring you back the result ok. And finally,

right you will that this entire operation will require 10 multiplications and one inversion

ok.

So, now, you know like I I basically you know like leave it to you as an exercise to think

that why you need one inverse ok, because you see that it looks like you have to do a 1

by Z 1 here and a different inversion here ok. So, I just leave it to you as an exercise to

think about how or why you basically need one inversion to do this operation ok.
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So therefore, right let us try to finally, make a comparison of the affine coordinates with

the  projective  coordinates  just  to  see  the  benefits  ok.  So,  you see  that  in  the  affine

coordinates these are the rough nomenclature of the you know as I said that you have to

do 2 into [lo/log] 2 log k 2, 2 log k is typically denoting the dimension of the bits ok. So,

we derive that it  was 2 into k minus 2 plus 1 or 2 into l minus 2 plus 1 and that is

basically is written here as 2 log k plus 1, kind of denoting the number of inversion

which you have to do. Interesting in the projective coordinates you have to do only one

inversion and that is the benefit, but at least you can also understand that there is the cost.

The cost is in terms of multiplications, the multiplications as increased you know like.

So therefore, right the question is that whether the final decision whether you will go into

the projective coordinates will depend upon your, I is to M ration that is the inversion is

to the multiplication ratio. Typically right if it is more than 5 like, if it is an around 7 then

we go into the projective coordinate systems ok. 
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So finally, there is you know like there is a technique also which is called as a mix

coordinate systems. In mix coordinate systems what you do is you basically keep 1 point

in the affine coordinates whereas, the other point is which is suppose you have got 2

points P 1 which is X 1 comma by Z 1 Y 1 by Z 1 squared. And, P 2 is X 2 by Z 2 and Y

2 by Z 2 square be two points on the curve ok, if Z 1 is 1, if Z 1 is 1 implies the this is

this point is an affine coordinate point. So, if P 1 is affine and P 2 is projective then also

you can calculate P 1 plus P 2 ok. And, here are some equations to do that and I am not

getting into the derivation of these equations. But, what I would like to mention here is

that there are some papers or some results which shows the number of multiplications are

further reduced ok. 

Most importantly squaring is increased a bit, but they are cheap in GF 2 to the power of n

as we have seen. So, so, roughly that the result; so, that if a is not equal to 0 then there is

an improvement of 10 percent and if a is equal to 0 then there is an improvement of 12

percent ok. So therefore, it makes also sense to keep one point in affine coordinate and

the other point in projective coordinates and to do the computations ok.

So, let me stop here and we shall continue with some more discussions about how we

can parallelize it and eventually go in to the hardware design of elliptic curves in the next

class.

So, thank you for your attention.


