
Hardware Security
Prof. Debdeep Mukhopadhyay.

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 02
Introduction to Hardware Security Part – 2

Start. Welcome, to the second lecture on Hardware Security. So, as in the last class we

were introducing ourselves to the topic of hardware security. So, I will continue with that

and try to see some more implications on hardware security in the present day context.

So, I will start with the elaborations on the concepts that we will be covering in today’s

lecture.

(Refer Slide Time: 00:45)

So, we will be trying to see about root of trust which is one of the fundamental objectives

of hardware security like we try to develop a root of trust using the technology of

hardware. And in this context we will be discussing about something which is called as

trusted platform modules or TPMs.

So, we will also discussing about hardware attacks in this context, like some of the

attacks which we are mounted on TPMs and essentially have challenged the

opportunities which hardware in general brings in. We will be also touching upon side

channel analysis and also talk about in general about trust in hardware. And finally, we

will be discussing about a hardware design flow like trying to understand how we can

eventually design hardware using our basic CAD tools.

(Refer Slide Time: 01:31)

So, to start with let us take a look at the developing a root of trust which is a very

fundamental I would say fundamental objective of bringing in hardware is that we try to

we develop a you know like a very minimal component which is called as the root of

trust or RoT. So, in this context there is a very important objective like you would like

for example; suppose, imagine that you have a computing system and you would like to

boot your computing system, how do you know that the operating system that you are

loading right essentially is trusted.

Because many of the attacks we know essentially which happens on software happens

because of the fact is that the operating system is itself compromised. So, even if you

know like run your software which essentially has for example, cryptography in it right

will not be enough because the OS on which the software is executing is itself

compromised. So, in order to address this there is a concept of secure boot which I will

try to introduce here.

So, in trusted boot there is a basic component which is which is essentially hardware. So,

if the basic root of trust is hardware and it tries to initiate a chain of trust, ok. So, the idea

is that there is a small component which is essentially your system hardware as shown

here. It tries to essentially you know; like basically what it tries to bring in is; it tries to

bring in or it tries to develop or basically like this is the starting point of your root of

trust, ok. So, it tries to measure or bring in the initial BIOS code, but before it executes

the BIOS code it does a measurement, ok. So, this measurement is trying to understand

that whether the BIOS is BIOS is legitimate or not ok. So, what essentially is

measurement can be discussed, but let us try to get what all idea, ok.

So, what we try to do here is or the root of trust or the hardware root of trust has to do is

it tries to initially measure the initial BIOS code and then. So, the measurement could

typically imply very simply take the program take it is configuration and compute a

cryptographic hash on it, ok. So therefore, what it tries to do is it tries to develop this

measurement or calculate this hash output and let us call it as a measurement of the

BIOS, and once the measurement is done it is appended to a chain of trust.

So, we append this and if this measurement does not belong to an approved list; this

approved list is denoted as L star then the process itself halts at that point, ok. So, the

processor itself stops at that point and it does not allow it to go further. On the other hand

if the measurement is fine. That means, if the measured output belongs to an approved

list then we continue. So, then we bring then we go into the next layer where we

basically. So now, the BIOS comes into the picture the BIOS takes control and the BIOS

starts to measure and execute a boot loader again the same process continues. That

means, this measurement is done the measurement is appended. If the appendment is fine

and if the appending is fine then it is allowed otherwise it is it halts, ok.

So, finally, the operating system comes into the control. And, the idea is now, therefore,

that if you go behind right, if you consider this chain of trust then the entire trust is built

upon this assumption that the hardware which is your root of trust is pure, is essentially

trusted, ok. So, that is essentially the reason why you know like hardware is very

promising because it can give you a very small component which you can trust, which

you can believe and it way and if this works fine, right then virtually you have a very low

cost an efficient way of building trust to your systems, ok.

So, here is a reference which you can look into it gives a very nice description about

several other things related to secured boot and also TPMs in general, ok.

(Refer Slide Time: 05:47)

So therefore, this essentially brings into this concept of trusted platform module or TPM.

So, TPM is basically a technology which essentially right is tries to bring in trust into

your system and it is a standard. It is a standard of trying to build in trust in your system

using this concept of minimalistic root of trust, which is built in hardware.

So, the idea is that trust you get there are many definitions of their many definitions of

TPM, like here I have in listed one of the popular definitions which says that a trusted

platform module is a computing platform that has you know like a trusted component

probably in the form of built in hardware. Just like what we saw in the previous slide

which it uses to create a foundation of trust for your software processes, ok.

So, there are different components of a TPM chip. For example, here is sort of a diagram

which tries to capture how a TPM chip looks like. So, I will just try to show you the most

important components. So, one of them is of course there is a LPC bus. So, it is a low pin

count bus and which essentially does the input output. So, it does the I O with the

external world.

Then there is a secured controller. So, this controller controls the internal TPM execution

flow and verifies the command. Like suppose you give a command to that TPM chip the

commands are often encrypted and they need to be verified to know that they are

legitimate commands, ok.

So, then there is an EEPROM which basically stores several keys. So, in TPM there is a

management of several keys and I have just enlisted two of the most important ones. So,

one of the one is called as an endorsement key and the other one is called as a storage

key or SRK, ok. And, there are also other important keys like owner authorization data

and EK certificate which are also maintained and stored inside the TPM, ok.

So, you may note here that the EK and the SK or the EK and the SRK never actually

leaves the IC boundary. So, this essentially remains embedded and in particular the

private component of this. So, these are typically based on public key cryptography. So,

they have a public key and a private key component. The private key components of

these keys like of the endorsement key and so on the SRK never leaves the IC boundary.

So, it leaves it basically remains inside the TPM chip and is never externally exposed,

ok.

So, this is a feature of the TPM chip, and there are some criticism against that also

because of the fact that even the user who is using the TPM chip is not aware of these

keys, ok. So, this can lead to some privacy allegations and things like that. But, at least

from security point of view this seems to be a very you know like a same solution where

the idea is that the chip essentially is kind of storing the secret key, and this secret key

component is never externally re-built, ok. So, even the user of the TPM chip is not

aware of this these keys, ok.

(Refer Slide Time: 08:51)

So, that is essentially the basis of this you know like the of the trust which is built using

TPMs, and the TPM right as you understand does lot of cryptographic operations. And

because of these there are some cryptographic components which are already being in

built in to the TPM chip, ok. So, for example, it has got a support of a 1024 bit or 2048

bit RSA key generation as well as RSA encryption. So, it can do both key generation as

well as encryption, ok.

Then, there is a SHA – 1 engine. So, this is a hash engine, ok. So, there is a hash function

as I said that when you are doing the measurements you are doing hash computations,

right. So, therefore, what you are typically doing is that; so, there is a platform

configuration registered and these stores the stores the current calculations like the

current measurements, ok. So, the measurements are usually done in this way like you

take an initial PCR and then you do an hash of a new code. So, you kind of do something

like an eternity of hash function. So, we apply the hash function one after the other and

you try to compute these digest and you try to keep it inside your inside your PCR, ok.

So, then one of the fundamental requirements of cryptography is that it requires or is

based on random number generators, ok. So therefore, a TPM also has got a small

hardware or a hardware for doing or calculating what are called as TR engines or true

random number generations. So, there is a true random number generator which is inbuilt

into this. Then there is a tick counter which is essentially provides on audit trail of the all

the TPM commands which are arriving at the TPM. And, the idea is that this is a you

know like a built-in where in with lot of security features so that you cannot do you

know like active attacks like. So, it is got an active shield. It has got voltage fluctuation

detections and the high frequency sensors reset filters and so on.

So, these are basically I would say more of like safety measurements which are being

kept in the TPM chips, ok.

(Refer Slide Time: 10:41)

So, you know like having said that TPM is also upgrading. So, the one which I told

before was more of like TPM what is called as TPM 1.2 which is getting operated into

TPM 2.20 and note that TPM 2.0 is not backward compatible, but TPM 2.0 comes up

with many other algorithms, ok.

For example it has got support of not only RSA, but it has also got support of elliptic

curve cryptosystems which supports like NIST P-256, Barreto-Naehrig curves. These are

different forms of curves which we need not you know like which we will probably see

at least some of them in our future classes. But, as I mention you in the previous class

also like elliptic curve crypto is a very popular and efficient way of developing public

key cryptography and TPM 2.0 apprehend the also supports the ECC then the SHA-1 is

of course there and also it has got extended to SHA 256 which is an improved watched

improved hash function, they are a modern hash function.

Then there is a support of a 128-bit AES encryption and along with this there are several

other algorithms which are also defined in that specifications of TPM 2.0. So, here is a

reference if you are interested from Wikipedia about how TPM 1.2 compares to tkm

TPM 2.0.

(Refer Slide Time: 11:51)

But, having said that I mean the point which I want to kind of you know like hit upon

here is that in inspired in spite of this you know like there have been reports of several

hardware attacks on TPMs, ok. So, I have just enlisted two of the very important attacks.

One of them was told in 2010 where researchers at black hat showed how to extract

secrets from a single TPM by inserting a probe and spying on the internal bus of an

infinite chip, which has got TPM. So, basically they probe the bus and found out the

secrets and as I said that if those secrets like EK and so on and SRK are revealed then the

entire trust collapses, ok.

Likewise in 2015, there was an attack on a power attack. So, this is a site children attack,

and we will be studying how or what differential power attack sees and how it works. So,

if the so, the idea is that a DPA essentially was mounted to extract the secret keys, ok.

So, this shows that even if you know like you have as a nice architecture like TPM the

idea of storing secrets is not a very I would say safe and secure means, because there can

be potential attacks. At the same time it also tells us that we should build our crypto

systems or crypto hardware with these kinds of physical attacks in; like with this kind of

side channel attacks in perspective.

(Refer Slide Time: 13:05)

So, this brings us to like topic on hardware attacks. So, basically what I try to I am trying

to say is that you know like although hardware comes up with lot of you know like lot of

advantages and it basically rules out several attacks on the software. But, then there are

some challenges on it is own which were which are essentially challenges because of it is

nature of being hardware, ok.

So, for example, right you know like when you talk about hardware you can actually

monitor several analog signals. For example, you can monitor the time taken. Of course,

like it is therein even in software implementations, but you know like if there are time

variations. For example, if you have say a sequential circuit which you have

implemented and the output comes up depending upon the input, ok. So then you know

like you can you immediately do fewer do few attacks, ok. Likewise is the power

consumptions, electromagnetic, sound, etcetera all of them can be potentially used to

attack, ok.

So, for example, you can probably appreciate this point that when you try to do

traditional hardware design you try to minimize power, ok. But when you are trying to

develop secure hardware your objective may be you know like maybe not that, maybe

rather than you know of course, you have to minimize power. But what is more

important is that you have to make or ensure that the power consumption does not vary

with your inputs, ok. Because if it varies then the attacker can catch those variations and

from there can try to obtain this obtain the secrets, ok.

Likewise you know like you can do physical attacks, like fault attacks. For example,

where you can part of the environment, you can part of the voltage, you can part of the

voltage, you can create temperature fluctuations, you can take UV light, you can use x-

rays, lasers, and so on to create bit flips in your circuit. And we will see later on you

know in our discussions how you can use faults effectively to get the secret keys in with

very less effort, ok.

Likewise you can also do invasive attacks you can probe data and you can modify

circuit. So, in this context there is a technology which is called as focused ion beam or

FIB which can actually create test points and even modify the chief structure, ok. From

the rear side of the chip and thus it can overcome sophisticated top metal mesh

protections and sensors. Like you may have in the top layer light you may have mesh

protections you may have protections against attacks, but the attack essentially takes pair

from the rear side from the rear structure.

And, these are you know like extremely sensitive and powerful equipments which are

expensive no doubt, but they are definitely feasible. And therefore, we need to take care

of these kinds of hardware attacks when we are designing our secure systems.

(Refer Slide Time: 15:41)

So, hardware security bridges the gap between theory and practice for sure you know

like as I said that you know like cryptographic theory has limitations, because

cryptographic theory often does not address the real world. And there is an absence of

theory for the reality, because of which even mathematically strong ciphers can leak in

the real world. So, you may take a nice AES algorithm or an RSA algorithm or an ACC

algorithm, but when you implement them right because of these leaked information

through what are called as side channels which may be intentional or it may be

unintentional the secrets can be compromised, ok. So therefore, what we need to do is

that we need to understand this gap between theory and practice.

(Refer Slide Time: 16:23)

So, therefore, right there are several goals which will is trying to address in our course in

due time is that we of course need to take care of performance which is like one of the

most important reasons why we have hardware, because we want to make our designs

more efficient. So, we want to of course take care of speed clock frequency latency do

fast arithmetic, bring in parallelism in our computations, ok, but at the same time of

course, like we have we have to also take care of some other things, ok.

The another very important thing which is of importance in mode probably in today’s

world when we talk about internet of things and cipher physical systems is that we need

to make our designs lightweight. So, we need to make our designs consume less area

take low power take low energy and so on, but even with this kind of constraints right we

cannot compromise on security, because if security is compromised then in the entire

technology will collapse, ok. So, we need to take care of side channel attacks, fault

attacks and also countermeasures; like when we build in countermeasures as we will be

seeing in the class there extremely they have they have an high overhead, ok.

So, we need to try to ensure that the countermeasures are light and they are can they can

be utilized for IOT kind of subsystems.

(Refer Slide Time: 17:37)

So, I will you know in the remaining part in today’s class I will be trying to tell you

about how we can actually develop hardware, ok. So of course, there are different ways

of designing hardware; like there are application specific integrated circuits ASICs which

may be costly, ok.

There is another computing technology which is called as a FPGA which will be trying

to kind of you know like focus in our class, ok. For example, an FPGA stands for what is

called as an field programmable gate array. So, it is a very interesting technology which

will basically comprised of an or an array of logic cells which are connected by routing

channels, ok. So, the idea is that as I if you go into the name of FPGA you will see that

there are certain important parts, ok.

One of the interesting part is this programmability ok. So, it says that it is programmable.

So, it is a hardware which is programmable. We know that there are general purpose

computers and we have general purpose computers, when we write programs on them

then it is programmable, right. So, we can write any program, you can write today bubble

sort, tomorrow quick sort on the same architecture, ok.

Likewise in and when you talk about FPGA, so, you can actually reconfigure it. So, you

can reconfigure an adder and to maybe work tomorrow as a multiplier, ok. That is the

biggest advantage of an FPGA. So, you can actually do an in-house design, you can do a

design inside your house, inside your lab environment and you can go from your basic

conception of the design to the final execution, in situ in your lab.

And, you know like because of this the technology is interesting, because the technology

you will see has got an array of logic cells which are connected via routing channels

there are special IO cells, and the logic cells are typically what are called as LUT. So,

these LUTs are essentially you know like the fundamental blocks of FPGA.

(Refer Slide Time: 19:17)

So, let us take a look about how and or how an FPGA you know like looks like. So, here

before that you know here I have kind of any state some applications or FPGA. For

example, I think I think the one of the biggest advantages of FPGA is to prototype. Like

before you are going into commercial deployment of an ASIC as I said that ASIC is

costly you would like to prototype your design. You would like to see that whether your

design at all works of works fine or not and there is an huge application of FPGAs, ok.

And, the less then and the production cost is less because of it there is a very less time to

market you can get better performance and modern FPGAs are improving in leaps and

bounds. So, the bridge or the gap between ASICs and FPGAs is also you know like

getting lesser and lesser. So, our FPGAs nowadays are pretty advanced. So, you can

really develop I would say competing technologies on FPGAs as well ok, because of

various dedicated blocks that they have like DSP blocks, multipliers and so on.

And, other thing whether I already said is that it is reconfigurable. So, you can also do

you know like you can make the same hardware to reconfigure and also you can

reconfigure on the fly. So, with techniques like partial reconfiguration you can actually

do dynamic reconfiguration, and that is a huge advantage with FPGAs brings it, ok.

Particularly in the context of things like IOT and those kinds of things very probably

need to change things very rapidly.

Then also you can develops special purpose computing platform. So, for example,

delegated to solve one problem and this is exactly where you can bring in crypto,

because in crypto right you need to solve dedicated problems. And thus in this context

you can try to bring in or develop FPGA accelerators, ok.

(Refer Slide Time: 20:57)

So, let us take a look about ok. So, before that here is a classic example of a des cracker.

So, this design is called as COPACABANA. So, all many of you know and probably

know about the des or the data encryption standard. So, in 1998, a custom hardware was

developed to develop an attack on this and you can see the cost. It was something like

dollar 25000 to build and decrypt DES cipher in 56 hours.

Later on, in 2006, there was an effort we just called as COPACOBANA which stands for

Cost-Optimized PArallel COde Breaker which was built and it was built on

commercially available reconfigurable integrated circuits. And, the cost reduced to

something like dollar 10000 and decreased des cipher in around 6.4 days, ok. So, the cost

decreases by roughly a factor of 25, ok. So, if you just adjust for inflation over 8 years.

So, you can see that even you can see the improvement is probably in around 30 x, ok.

Now, since 2007, there have been several efforts. So, for example, this is an example of a

spin-off company which tries to develop successors of COPACOBANA, and one of the

success of COPACOBANA is called as RIVYERA. And it reduces the time to break

DES to the current record of less than one day using 128 Spartan-3 FPGAs, ok.

So, this is an interesting example and this is a Wikipedia link where you can go and see

how if FPGAs can be used to develop custom attack hardwares.

(Refer Slide Time: 22:23)

So, that you know like. So, this here is a photograph of how the COPACOBANA looks

like. And you can see it is like made of nice structures we are built around FPGAs.

(Refer Slide Time: 22:33)

So, here is a diagram about how an FPGA architecture looks like. So, this architecture is

what is called as the island architecture. So, in this architecture you will see that there are

some IO blocks. So, these input-output blocks are located around the periphery of the

core of the chip and the objective of an IO block is just to develop connectivity of the

chip. That means, the chip tries to communicate with the external world through these IO

blocks.

The other important block is the logic block. So, this logic block is where your logic

resides ok. So, this logic block is compromised or what are called as CLBs or

Configurable Logic Blocks which are in turn made about what are called as LUTs or

Look Up Tables, ok.

So, in general this architecture may vary from slide to slide from vendor to vendor, but

more or less this is how it looks like, ok. So, you have got the logic blocks and this logic

blocks essentially are interconnected with; I mean they are interconnected with each

other, they are interconnected with the power with the lines around and for that you also

have got special blocks. So, these blocks are what are called as the switch blocks and the

connection blocks.

So, if you see this diagram you will see that there are two important routing points, and

they are all switches, ok. So, for example, this is this logic block is connected to these

rails, and these are essentially what are called as a connection blocks. For example; if

you see this logic block it is connected with these rails or the wire segments around the

CLBs they are connected by programmable switches, ok. So, you have got

programmable switches which you can configure to get connected, ok. Likewise right if

you take the wires in adjacent channels like this channel and this channel they are

connected here by what are called a switch blocks, ok. So, these are nothing, but

interconnection logic or interconnection switches which you can program.

So, for example, if I want to turn on a switch I need to say you know like program one

over there, whether you know if I want to turn off that switch I will program it by 0. So,

it is basically using switches or maybe digital switches to be more precise, ok. So, at the

end of the day what you are trying to do is that you have a design, and your tool right

will give you a 0 1 pattern which is often called as the bit file and you take that bit file

and the bit file configures these switches, ok. And therefore, right the FPGA gets

reconfigured and not only the switches, but also your lookup table, and your entire

structure gets reconfigured to work as you wish, ok, as you intend.

(Refer Slide Time: 24:57)

So, here is an how the internal of the CLB. So, this is a slightly and on an older FPGA

so, but I think the idea remains the same. So, you will see that in the CLB that is a block

which is called as the LUT or the Look Up Table, ok. So, these lookup table typically

always have a fixed number of inputs. So, the number of inputs here a designated as 4,

ok. In modern FPGAs we may probably see it go up to 6, ok.

So, there was an older work where people try to do lot of you know like explorations

trying to find out that what should be the size of this input of the LUT, ok, whether it

should be 4, 5, 6, 8 or so on. So, it was found out that if the value is around 4 or 6, right

the around this point it has found out that the utilization of the look up tables is

maximum, and therefore, right you will see that if you whenever realizing Boolean

functions then most of the FPGA is typically have got inputs which are within 4 to 6, ok.

So, therefore, I mean you have the LUT block. So, this LUT block can realize any

Boolean function of 4 input in this diagram, if it is 6 then it can realize any Boolean

function of 6 input. Sometimes in modern LUTs we do not have only one output, but you

have got two outputs also, ok. So, but anyway without loss of generality and without

losing too much information we can you know like I think about this architecture right.

Now we have one output in the LUT and there are four inputs to this LUT.

Apart from this there is also a control and carry logic which is a combinational block

which is often a fast carry chain. And this fast carry chain essentially you know like is

used to pass on your input carry to the output, ok. So now, what you can do is, you can

pass this input carry and calculate the output and from there you will get fast carry chain.

So, for example if you are trying to implement then adder; for example, you know that

the biggest hurdle of implementing an adder is a carry chain. So, you can actually

implement an adder nicely in this structure where the lookup table does your other

computations, but the carry chain is a dedicated path, which is much faster than your

other LUT blocks.

You also have you know like a flip-flop which is essentially supposed to provide you

support for the sequential logics. So, you can see that you have got support for

combinational logics and sequential logics in together you can actually realize our this

basically functions as your basic logic block.

(Refer Slide Time: 27:19)

So, that is how the design flow looks like. So, the design flow you will see has got or it

starts with you know like what is called as an RTL description. So, you start with an RTL

description you have got a design and you start with an basic RTL. So, you can

implement your RTL using say Verilog or VHDL or some other languages, but typically

Verilog is a very standard language which is adopted. Then you put like pass that to

several CAD tools; again you have got several CAD tools like you have got Xilinx and

there are like I have just written more hear about the FPGA tools which are used, but if

you go into the ASIC world then the other tools like which are designed by Cadence and

Synopsys.

So, if you base the idea is that you basically do an implementation here. So, the

implementation with include blocks like placement and routing. And finally, the

bitstream generation, and once the bitstream generation is done you essentially can

download that bitstream through a port which is often the z tag port and you can

configure the FPGA to work as you wish, ok. So, you basically can reconfigure the

FPGA.

(Refer Slide Time: 28:29)

So, this is how the overall design flow looks like and what I will try to you know like

show you was one of the sample boards which you can probably try to get access to. Is a

relatively low cost FPGA device which is a called as an Nexys-III board and you know

like we can actually. So, this is the FPGA inside the board and what we will be trying to

do is we will be trying to program this FPGA using our design and typically and

reconfigure it to work as we want.

(Refer Slide Time: 28:59)

So, I will take a simple design problem and try to show or illustrate about how an how

basically we can do design on these FPGAs.

So, to start with you know like you can take a 2 bit adder. So, your objective is to build

this logic of s equal to a plus b.

(Refer Slide Time: 29:17)

So, if you when you want to do that you are starting thing is writing or developing a

design file. So, this design file is often described it Verilog, ok. So, I am not going into

the syntax of Verilog, because that may be you can look into yourself. So, there is a

module description inside that you develop the logic for the adder, ok.

(Refer Slide Time: 29:35)

Once you have developed that added you take it through a flow. So, easier is as Xilinx

design flow here, you can choose the target FPGA right the corresponding family device

package and other stuff, and then you can actually pass it through some sequence of

steps. And finally, you will get the bit file, ok.

(Refer Slide Time: 29:53)

So, the bit file. So, the bit file; so here is are adder logic.

(Refer Slide Time: 29:57)

You also want to test your design. So, you want to know that whether your design is

correct or not. So, the usual way of doing that is by writing what is called as a test bench.

So, you write a corresponding test bench of your adder.

(Refer Slide Time: 30:05)

So, if you see the test bench right I mean again without going into the syntax, you

basically instantiate the adder which means you kind of scan sane inputs to the adder.

And the input sequence is denoted here. So, you are basically giving stimuli to your

adder. So, you are giving say 0 0 as an input or a 1 1 or 1 3 as input and so on.

Now, this adder will essentially give you the corresponding output and you can actually

verify whether your adder is correct or not.

(Refer Slide Time: 30:33)

So, usually what you do initially is you do a simulation. So, you basically do a

simulation which is called as a behavioral simulation. And gradually as you go down the

design cycle you do more and more accurate simulations.

(Refer Slide Time: 30:45)

So, there is another when you are trying to really put this design on to the FPGA you also

have to do what is called as a user constant file or UCF where you have to describe the

how the interconnection between the FPGA and your Verilog code. For example, the

Verilog that I wrote has inputs like a 0, a 1, b 0, b 1, s 0, s 1 and s 2. So, these are the

outputs of the adder. You can actually tie it to the FPGA pins by this LOC configurations,

ok.

So, for more descriptions you can actually look into the Nexys-III board manual from

there you can actually get this descriptions and accordingly you can write the

corresponding UCF file once you have done that you can go into the implement and play

synthesis step.

(Refer Slide Time: 31:25)

And, automatically your tool will go through a bunch of steps, ok. And, these steps

essentially I have got several important components. So, first important component is

that it does and RTL design as a like you already done this RTL design. Once you have

done these you know like the next step which is done is what is called as an RTL

elaboration.

So, in RTL elaboration what is done is that it basically infers your design into data path

components, or control path components. So, data path components are essentially

realized by special components which are internal to the FPGA and the control path gets

elaborated into either an FSM or some Boolean logic.

So, there are several optimizations which are done some of the optimizations are

architecture independent. That means, they are done by usual compiler optimization

techniques like constant propagation, strength reduction, expression optimizations

whereas, the control paths are optimized by FSM encoding and state minimization.

(Refer Slide Time: 32:21)

And on the other hand the next steps which you are done are more specific to the FPGA

where you actually do a mapping. So, the mapping is where you basically take various

elements of the design and you optimally assign to FPGA resources. So, FPGA resources

essentially you know like the they are typically like the data path elements gets infer to

adders, multipliers and memory elements, and the control paths are realized in the FPGA

blocks and in the FPGA logic block often, ok. So, the optimizations are often depend on

the FPGA fabric like the LUT structure like whether it is a 4 (Refer Time: 32:51) LUT

and so on.

Then, it is followed by two important steps which are called as placement and routing

and finally, you get the bitstream, ok. The once you have got the bit stream that is a final

step because the bit stream takes a routed design as input and produces a bit stream

which programs the logic and interconnects, ok. As I said that the all of them are

programmable, so, you can program and everything is a switch. And therefore, in this

you can actually program them, either turn on or turn off the switches.

(Refer Slide Time: 33:17)

So finally, you open the tool from adept. So, there is just an example, but you can do it

with other tools as well. So, then you know like you basically download this bit file. And

finally, your design works as intended ok.

(Refer Slide Time: 33:27)

So, reference you can actually take a look at this book. You will find more details about

how you know like the design works and how these designs can be made and this is a

standard reference you will be trying to follow in most parts of the class; although we

will try to use some other materials as well.

(Refer Slide Time: 33:47)

So, what we have discussed in today’s class is; we have discussed about TPM which is a

hardware security core processor to work as a root of trust, ok. And, the hardware attacks

and we just say that even when we are using hardware then still attacks are possible in

the form of specialized hardware attacks we are often called as side channel attacks.

FPGAs provide a reconfigurable platform for hardware design. So, it is very handy and

not only to understand designs, but also to really develop applications using a for

hardware. And, the FPGA design flow typically takes the RTL description which is often

done using languages like Verilog which are high level description or hardware

description languages where high level languages. And finally, you take it to the

prototype. And, the prototype is usually done in the form of bit file. So, you create a bit

file and then you download that into your design and your design starts working, ok.

So, with this I would like to come conclude this part of the class. And thank you, for your

attention and we take the next class, where we will be trying to look more into hardware

designs.

