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Welcome  back  to  this  class  on  Hardware  Security.  So,  we  shall  be  continuing  our

discussion on finding out the Compact AES S Box for Normal Basis representation.

(Refer Slide Time: 00:27)

So, if you remember in the last class we essentially stopped at the scaling and squaring

optimizations, and we will continue from that point ok. 



(Refer Slide Time: 00:35)

So,  this  is  a  quick recapitalization  of the normal  GF 2 power of 4  square inversion

circuits, where we were able to decompose my GF 2 power of 4 squared circuits in terms

of GF 2 power of 4 computations.  So, for example,  the multipliers are now in GF 2

power of 4,  the inversion is  also in GF 2 power of 4 and likewise the scaling.  And

multiplying that is the scaling operation where you have multiplying with a mu which is

a constant is also in GF 2 power of 4.

So, we shall try to see how these individual components can be now worked out.
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We already worked out the product in GF 2 power of 4, essentially where we were able

to do multiplication in GF 2 power of 4. The idea was that we will write the element in

GF 2 power of 4 as GF 2 power of 2 whole power of 2. And therefore, continue our

operations from there ok. 

So, now when we see that when you work out this GF 2 power of 4 multiplication then

we have got several multiplications which are now in the subfield GF 2 power of 2 ok.

So, we should be able to work that also out.

(Refer Slide Time: 01:35)

And here is a way how we can do that. When you are doing multiplications in GF 2

power of 2 you can isomorphically write it as relevant in GF 2 power of whole GF 2

power of 2; that means, right there are 2 parts now in the representation. That means,

when you are multiplying 2 elements say your elements are gamma and delta; so gamma

is an element in GF 2 power of 2. So, when you are doing is multiplication right is that

when you essentially these are your corresponding arguments which you have multiplied

ok.

So, for example, if you go back and see the equation here then when you are doing this

multiplication in GF 2 power of 4 then these elements that is gamma 1 gamma 0 are in

GF 2 power of 2 ok. So therefore, right likewise delta 1 and delta 0 are in GF 2 power of

2. So now, you need to do these computations like you know like for example, gamma 1

delta 0; that means you have to multiply in GF 2 power of 2. So, how do you do that is



shown here; that means, I take 2 elements in GF 2 power of 2 and I show how to do a

multiplication. So, I take a gamma which is in GF 2 power of 2, I take a delta in GF 2

power of 2 and then I multiply them.

So, again when you are essentially you know like having an element in GF 2 power of 2;

that  means,  if  you consider element  say you know like in GF 2 power of 2,  so that

means, right your element has got 2 parts again and each of these elements are now in

GF 2. So, this element is in GF 2 this is element is also in GF 2. For example,  one

element is say g 1 denoted here as g 1 and the other 1 is g g 0, the basis of this is W

square and W ok. So therefore, my element is g 1 W square plus g 0 W; likewise my

other element is d 1 W square plus d 0 W.

So, when I am multiplying them right essentially I get these elements. I get g 1 g 1 d 1

plus you know I essentially can I am just doing the individual multiplications, and note

that  I  also have this  equation that  is  W square plus  W plus  1 is  equal  to  0 ok.  So,

essentially I can I will try to use this as my tool for simplification and bring the result

back in the original field ok. 

So, once you have done that then you essentially get your result back in the original basic

that is omega square and omega and these are your corresponding output coefficients.

So, if you if you understand these and I leave it you as an exercise to work out the details

of how essentially you can simply and being the result back into W square and W ok.

So, therefore, right I have been once. So, if you have understood this right, then we can

continue further and see how the next computations can be done.
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For example, the most important step as I was mentioning is the squaring and the scaling

operation in GF 2 power of 4 square. So, note I am doing a scaling with mu. So, mu is

my constant which is denoted as delta 1 Z power of 4 plus delta 0 Z and I am doing or

applying this scaling on the square of gamma ok. So, the gamma is essentially nothing

but gamma 1 Z to the power of 4 plus gamma 0 Z ok. So, this step is essentially this

blocks this box that is this box is what we are now trying to expand ok.

So, if you now want to tell me the details, then that means that when you are doing a

gamma square, so, note that gamma is nothing but gamma 1 Z power of 4 plus gamma 0

Z. That means, gamma square essentially can be written in this form ok. So, again I am

not going into all the details about how this squaring can be done. But again you know

like leave it to you as an exercise to verify, because we have already worked out this

product right where we have multiplied for example, we have where we essentially have

done this multiplication. So, it is just a simple case where I mean the squaring is nothing

but a multiplication where 2 inputs are exactly same ok. So, if you plug in to that right

you should get these equations and that and that exact details. I again leave it to you as

an exercise, but interestingly we look into the square the scaling operation the scale and

squaring operation ok.

So,  when you are  doing a  scaling  and squaring operation;  that  means,  you are now

multiplying with this constant which is delta 1 Z power of 4 plus delta 0 Z with this



output and this is essentially nothing but the squared result ok. Again, if you do a few

more few more manipulations then you will see that there are 2 terms here, again one

which is  a essentially  can be expressed in Z power of 4  and Z and these are  the 2

components ok.

So, one component is shown here as you know like. So, this is my you know like 1

component and other component is this and you can see that the basis is Z power of 4

and Z. So, again I have written the result of doing a scaling and squaring in my field,

because I have been explaining to express that in the original field. 

So, now with this is right, we essentially can observe few more interesting things.
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So,  to  start  with when you are doing is  optimization  and I  want  to  do further  more

optimizations, let me set delta 1 is equal to N delta 0. Note that the choice of mu is in my

hand to some extent. So, if I plug in this optimization that is delta 1 is equal to N delta 0,

then you can observe that this mu gamma square essentially had this was my original

equation, but then you can observe that this term will vanish, because delta 1 plus N

delta 0, because of this optimization will work out to 0 ok.

So therefore, right this will get simplified into this form where you have got you know

like delta I mean is you have got delta 0 square multiplied with N I mean gamma 0

square multiplied with N delta 0 Z power of 4 plus this part ok. So now, you note that



since delta 1 is equal to N delta 0 and I plug it over here I get N square delta 0 ok. So

now, if I take delta 0 common from here I will have got 1 plus N square and note that

again N square plus N plus 1 is equal to 0 and therefore, I can substitute 1 plus N square

with N ok. So therefore, this is my final form.

So note that, if I want to do this computation I have to do 2 scaling operations. One is a

scaling with N; scanning means multiplication with a constant in the lower field and

another 1 is the squaring with N square. So, these are my 2 scaling operations that I need

to do and I have to do one more addition. So, I have to do one addition here then that is

enough ok.

Note that the squarings in GF 2 power of 2, because there are some squarings which you

are doing, but now the squarings are is the lower field GF 2 power of 2 GF 2 power of 2

and that is free ok. As I have already kind of inductive in the previous discussions ok.

(Refer Slide Time: 08:37)

Therefore  right,  you essentially  have  a  pretty  compact  form of  the squaring  and the

scaling operation, although it is not totally free ok. So therefore, about the same time it is

pretty easy to observe. For example, like in you have to see that that the squaring is also

free you can easily work that out. So, suppose my input is g 1 W square plus g 0 W. So,

again this is missed out. So, you can just correct it by writing this g 0 W. So, if I do a

squaring operation then I can work is out as g 0 W square plus g 1 W ok. So, note that if I

this is my input and this is my output. Therefore, the square can easily be done by just



doing square swapping of the inputs. So, you just need to do a swap and you will get the

corresponding output without any explicit computation ok. 
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So, now with this right we should be able to understand how we should now we can

again take a look at the lower or the or the GF 2 power of 4 inversion. Again it can be

worked out exactly in the same fashion like, but you are seeing previously, but now my

computations are or the sub computations are in GF 2 power of 2. So, the circuit for

squaring and scaling in GF 2 power 2 can be simplified by assuming the choices of N

which can be either W or W squared and I depending upon that you probably have to do

scaling with W or a scaling with W square. So, in both cases you can see that whether

you are doing a scaling with W or whether you are doing with scaling with W square you

essentially have got similar computation which are required ok.

So, therefore, for in 1 case it is just like g 1 plus g 0 W square plus g 1 W. In the other

case it is g case it is g 0 W square plus g 1 plus g 0 W ok. So, this is how we can do this

part where you are basically doing a scaling with N ok.
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So, finally, we essentially have derived out derived all the individual steps and just for

completion, we now need to do the final transformation, both from GF 2 power of 8 to

GF 2 power of 2 power of 2 2 and from this field back to GF 2 power of 8.

So, we present like in the polynomial basis another way of doing this mapping. So, we

taken  elements  g  we  belongs  to  GF  2  power  of  8  which  is  the  standard  a  e  s

representation. You can abbreviate from by the double from g 0 to g g 7. And therefore,

is you have corresponding polynomial representation. In the normal basis when you are

mapping this to say b 7 to b 0, then you note that this element that is when you are

expressing it as GF 2 power of 4 square will have 2 parts ok.

The first part is a gamma 1 second part is gamma 0. So, my element is gamma 1 Y power

of 16 plus gamma 0 Y, likewise these gamma elements I are elements from GF 2 power

of 2 whole power of 2. So, I can express them as say capital gamma 1 Z power of 4 plus

capital gamma 0 Z and likewise. 
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So therefore, right what I can do is now that means, each further more each of these

elements,  like  gamma  like  gamma  they  will  be  are  element  in  GF  2  power  of  2.

Therefore, I can write that as b 1 you know like I can write that as d 1 or b 1 W square

plus b 0 W ok, where each of these b 1 b 0 are my bits or in 0 1 values. So, bringing all

of them together; that means, this polynomial is nothing but there are 2 parts you can

actually like in equivalent in the converted form actually, you essentially have these 2

parts right.

For example, when I am having this is my higher part and this is my lower part. So, you

see that I write this is a basis Y power of 16 and this is my basis Y. And again recursively

this part are each of these parts you can write them in the basis Z power of 4 and Z and Z

power of 4 and Z. And likewise each of these individual terms you can write as in basis

W square W, W square W and so on ok; likewise here also the basis W square W, and

likewise, here also the basis W square and W, ok.

So therefore, if you know just product this is this is multiply you will get the coefficient

for b 7 as W square Z power of 4 Y power of 16 and so on ok. So that means, now if I

want to do a comparison I want to do a kind of you know like conversion then I can use

these products for my comparisons.  I can get from these coefficients  I  can get these

coefficients by calculating these values. So, if you want to calculate these values you



need to know what is your mu and N ok. So, mu and N once they are decided this basis

gets fixed exactly like what you have done in the context of polynomial basis ok. 

So therefore, I mean let us see how the matrix looks like.

(Refer Slide Time: 13:23)

So, what we do is now we take the mu. So, again we take the same mu as I show to you

why this choice of mu is correct. I showed to you I think while choice of N is correct

likewise you can verify the choice of mu is correct. And once you have fix this choice of

mu and N you get the value of Y Z and W as shown here. And therefore, right you can

actually get the corresponding products in this way ok. So of course, like when you are

doing these multiplications you have to take you know like when you are do any modular

reduction you can take the AES polynomial for doing the modular reduction ok. 

So, again I leave it to as an exercise to verify that indeed you get these values like 6 4 7 8

all of them are in hexadecimal. That means, you can elaborate them as 2 parts and you

can write them as in binary format ok.
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Once you have got these binary equivalents it is straightforward to write this matrix. So,

you can see that each of these columns ok. So, basically like what it means is that if you

get this that if I am basically multiplying this with the vector denoting b 7 b 6 and so on.

So that means, exactly that is what is in the right hand side of this matrix.  So, these

matrix multiplies with b 7 to b 0 and get your results in g 7 to g 0. So, we are basically

using this matrix mapping an element in the composite field to GF 2 power of 8 ok. So,

if I call this mapping rewrite as you know like X inverse then that would so, or may be X

basically. So, then the inverse of this mapping we will take me an take me from GF 2

power of 8 to GF 2 power of 2 whole power of 2 whole power of 2 this is the composite

field representation ok.

So,  you  can  verify  that  each  of  these  columns  will  stand  for  these  constants.  For

example, this right we will stand for the constant 6 0. So, you can verify that that is that

in a straightforward manner that this column essentially, so, this part write stands for 6

and this stand for 0 and therefore, it is nothing but 6 0 ok. So, likewise you can verify the

other columns ok, so, which I am not go in to ok.
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Now, let us take a look about the comparisons because we have derived quite a number

of equations normal basis and polynomial basis. Let us take a final look into how we can

compare ok. So therefore, what we are seen is that when we are wanting or try to going

to the compact realizations the inversion circuits of GF 2 power of 8 requires roughly the

same level of hardware. You will see compare to circuit you will see there are 2 adders 3

multipliers 1 square and scalar. So, that is not much to kind of distinguished from one

with the other.

Likewise, in GF 2 power of 2 the squaring and scaling is free in polynomial basis, but the

squared is free in the normal basis. So therefore, the main difference actually between the

2 occurs in the combined squaring and scaling operation in GF 2 power of 4 ok.
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So, let  us take look into that  operation in more details  and here are all  the possible

descriptions of that and I just enumerate the XOR count, because XOR is the most used

gate in these realizations. So, there are 8 choices of mu and I told you why there are 8

choice of mu, because there are 4 4 roots of you know like irreducible polynomials like

X to the power of 4 plus X cube plus 1, and likewise the other irreducible polynomial.

So,  there  are  4 roots  for  each  of  them and you have  got  eights  are  choice  ok.  And

likewise,  if you workout the cost for squaring and scaling this is your corresponding

equation. Again I leave it as an exercise to verify that it is indeed the correct enumeration

or correct elaboration of the equation. These are the 2 outputs; that means, again this is

done in the polynomial basis. 

So, you can observed that the polynomial is written as AZ plus B because it is in the

polynomial basic ok. And likewise you observe that I am trying to basically find out now

that what are the cost of these operations ok. When you are doing this computations

again you have basically doing it in GF 2 power of you are doing in soft field right, so,

basically you are doing in GF 2 power of 2. So, this lower field computation in GF 2

power of 2 you can again do in either polynomial basis or normal basis that is why write

we have so many combinations.

If you remember we discuss in the first slide right about when you started this discussion

in  how  many  ways  you  can  write  the  AES  S  box  ok.  So,  you  can  actually  do  a



polynomial or a normal basis representation in the lower field as well and depending

upon  you  know  like  the  normal  basis  we  have  only  have  one  choice,  but  in  the

polynomial basis you have got two choices depending upon the basis ok.

So, the basis either omega or omega square and likewise write you will see that the gate

counts are also varying ok. In the normal basis you have got another you know like sort

enumeration of number of gates. In particular let me show you with 1 of the example, so,

last one. So, N square so, in this case mu is nothing but N square C plus so, C is your N

square and delta is 1; that means, the value of mu is this case is N square Z plus 1.

(Refer Slide Time: 18:45)

So, if I take that then mu is N square Z plus 1 and assuming that this is a polynomial

basis for GF 2 power of 4 and assuming the polynomial basis for GF 2 power of 4. That

means, as N belongs to GF 2 power of 2. If remember I said N cube is equal to 1. Further

Z is also a root of Z square plus Z plus N ok. So, where you know like N square plus N

plus 1 is equal to 0. 

So, you can show again I leave it to as an exercise and you can follow it from the text

book also that mu will satisfy this equation. That means, mu is a root of the irreducible

polynomial in GF 2 power of 4 which is x to the power of 4 plus x to the power of 3 plus

x  square  plus  x  plus  1.  Likewise  mu  can  also  be  a  root  of  the  other  irreducible

polynomial which is the x to the power of 4 plus x cube plus 1, and that is why that 8

choices of mu ok, one of this choice is say N square Z plus 1 ok.
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So, with this  choice you can actually  observe the squaring and scaling operation ok.

Again as I said I leave it to as an exercise to verify this equation. I will just show you the

enumeration here ok.

So, the enumeration works us follows. If the underlying field is normal basis that means,

I am talking about the last column in my table.  Then the squarings are free.  So, the

squaring write are free in the normal basis representation, but a squaring and scaling with

N equal to W and with N equal to W square both will required one XOR gates ok. And

therefore, to sum up write these competitions like A plus B will take to XORs, because

please note that A is an element in GF 2 power of 2. And that means, if you want to do an

addition in GF 2 power of 2 you need to XOR gates ok; one for the lower bit, one for the

higher bit.

So, you need to XORs here likewise for this operation also for this plus you need to

XORs ok. But what is free is the squarings are free, but the scaling is not ok. So, whether

you are doing a scaling with N square or whether you are doing a scaling with N you

need one XOR each and that is why you need 2 plus 2 plus 2 that is 6 XORs and that is

exactly right what we have seen in the table ok. 
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Likewise, the underlining field computation can also be done in the polynomial basis.

When you are doing in the polynomial basis you have got 2 choices either N is equal to

W or you know like or N equal to W square. So, if you take N equal to W again A plus B

on this edition can be done with 4 XORs 2 XORs each, but the squaring and scaling with

N is free ok, but the squaring and scaling with N squared with still in 1 XORs. So, you

know you need 5 XORs ok. So therefore, you see that in the lower field if it polynomial

basis we actually say 1 XOR ok, likewise for N equal to W square. 
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So, that is exactly what we see in this table where if you do this type them in that lower

field combination in polynomial basis you required 5 XORs each where is if you do this

in normal basis you need 6 XORs ok.

(Refer Slide Time: 21:47)

So, likewise right you can work out the XOR counts for squaring and scaling in normal

basis and you can see that there is a little bit of advantage when you are doing probably

like the competitions in normal basis. There is another very interesting look that you can

take the inversion circuits.
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So, here is exactly the polynomial basis inversion and the normal basis inversion net to

make main compare. If you see that as I said to you if you just compute the number of

computations there is nothing much too kind of compare. It has pretty much the same

number of inversions 3, it has got the same number of XORs, same number of inversion,

same number of scaling and squaring ok. But interestingly, you see normal basis all the

multipliers have got shared inputs, but in polynomial basis if you consider for example,

this pair and this pair then they do not have shared inputs ok. So, what is the implication

of that? So, if you take a look at the lower field multiplied, so, that field multiplied is in

GF 2 power of 4 or GF 2 power of 2 power of 2. So, is basically in GF 2 power of 4

means is in GF 2 power of 2 whole power of 2.
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So, then you can easily see that there is an opportunity of saving ok. So, here I have just

drawn the GF 2 power of 4 multiplied, but I have drawn 2 copies of GF 2 power of 4

multiplied where one argument is shared ok. So, this is the argument that I have shared.

So, you can see that if I share this argument. That means, this is my argument that has

been shared, then if you remember right this particular XOR you can actually shared

between the 2 competitions. So that means, right you can actually save some gates here

ok.

Likewise, you can see that there are free multipliers like one if you observe M 1 and M 1

dash ok, you see that there is also one input with this shared like this is one input and this



is one input there essentially coming from the same delta 1. So, you can still save some

gates over there ok.

So, in the lower field right you will be saving one get their ok. So, therefore, for each of

this computations you will be saving one gate because the lower field lower computation

will be in GF 2 2 ok. So, you will be saving this XOR means you will be saving a 1 bit

XOR, whereas in this particular field like it is a 2 bit XOR. So, in this diagram this is

where you are saving a 2 bit XOR, but if you go down right and consider M 1 and M 1

dash then you are saving one XOR ok, but there are 3 such cases. So, you saved here 1

into 3 which is 3 XORs and therefore, totally you save 3 save 3 plus 2 which is 5 XORs

ok.

So therefore, right here you have been opportunity if you have got shared input to save 5

XORs. So now, if you take a like a look back then you will see that so, if I take a look

back right then you will see that in the previous circuit right you have if you if you now

compare this circuit right you will with this circuit.  That means, the polynomial basis

circuit with a normal basis circuit.
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In the normal basis circuit you have more opportunities of sharing whereas in this case

you can share, but not in one case ok. So therefore, straightaway there is an advantage of

5 XORs in this computation ok.



So, therefore, it turns out that you know like that with all these things right that there are

normal basis representation on the top level is probably a good way to get a compact

implementation ok. So, all the hard maths pays in terms of gates ok.
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So,  here  is  like  quick  reference  you  can  actually  go  through  the  original  paper  of

Canright  which  is  published  in  CHES  in  2005.  But  we  have  also  try  to  kind  of

summarize this in the textbook which you can read and probably get more insights about

how the design has been done and developed ok.
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So, just to conclude we discussed about the subfield composition in normal basis. We

started with GF 2 power of 8 inversions decompose them further in GF 2 power of 4

inversions or GF 2 power of 4 computation units. The GF 2 power of 4 computations,

were then again in turn you know like describe with respect to GF 2 power of 2 blocks

which you are further described in terms of GF 2 computation blocks.

So, we discuss the squaring and scaling operations were decisive with respect efficiency

when  compared  with  their  polynomial  counterparts.  And  finally,  the  normal  basis

representation  in  GF  2  powder  of  8  seems  to  be  an  ideal  choice  for  compact

representations of the AES S box ok. And in particular right I would also like to mention

in the passing that a normal basis representation also probably gives a more fault tolerant

design, but that is another story.

With this, I will like to thank you for your attention.


