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So, welcome to this class on Hardware Security. Today, we shall be trying to look into

specific block of a AES, which we have already being referring as the AES S-box or the

sub bytes. So, we will we shall take a closer at the AES S-box and try to see a very

interesting work about how you design compact AES S-box on hardware. 
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So, what we shall be trying to cover several topics in this in this part. So, we shall be

trying to first of all understand in how many ways the AES S-box can be implemented.

We shall be trying to look in specific about into the polynomial basis. We have discussed

there are two types of basis like polynomial as well as normal basis. So, in particular we

shall be trying to look into polynomial basis and try to see some circuit optimization

techniques. We shall be looking into the in polynomial inversions circuit in GF 2 power

of 8 and the I shall be taking about some important sub operations like one of them is

scaling and squaring. 



And we shall be discussing about how we can do optimization on it. And in particular

right  the  main  theme  of  this  work  could  be  how  what  is  called  as  hierarchical

decomposition or where essentially we decompose field in from in GF 2 power 8 to a sub

field, which is GF 2 power of 4 square. And the again break up the GF 2 power of 4 into

GF 2 power of 2.

So, we basically have a higher hierarchic hierarchical way of developing this design and

that is what the we shall be trying to understand. And finally, we shall be concluding

with a discussion on how do we can do an end-to-end transformation, because at the end

of the day we need input and the output to remain the same as that in the original AES

specifications. So, in particular this work will be you know like largely based on this

work by D. Canright, which was published in CHES in 2005. And it is a very interesting

work on a designing compact S-box for AES.
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So, just to recapitulate, we are already have been discussing about this in our previous

classes that we have already been discussing about field isomorphisms. So, the spirit of

this work is based on field isomorphisms. So, the idea is that we have got the field GF 2

power of 8 as originally specified in the AES specifications. 

We try to find out or express it eco equivalently in GF 2 power of 4 square and then

again that is isomorphisms to GF 2 power 2 power of 2 power of 2. The idea is that if



you want to do an operations say final field inverse GF 2 power of 8, then it is very

costly. So, we try to therefore express that or convert that in to a field GF 2 power of 4

square  by  applying  an  isomorphic  mapping  ok,  but  the  idea  is  that  the  underlying

operations are now done in GF 2 power of 4 rather than GF 2 power of 8 ok.

So, therefore the cost in GF 2 power of 4 is significantly less compare to GF 2 power of

8. Likewise, we try to express GF 2 power of 4 in GF 2 power of 2 whole power of 2 ok

and  therefore,  in  the  sub  field  GF 2  power  of  2  the  operations  are  now done.  So,

therefore you consider this right GF 2 power of 2 is only 2 bits of data. So, therefore the

underlying operations becomes much more simple ok. 

At the and also right since they are isomorphic, you can actually transform this field into

GF 2 power of 2 power of 2. And you can do your operations in this field in an more

efficient manner. And then again you can apply the reverse mapping to get back to the

GF 2 power of 8. Remember that our AES operates in GF 2 power of 8. So, we should be

avail to operate get the result back in the original field in the original target field. So,

there  are  different  types  of  mappings,  we  can  define  and  different  types  of

implementations can also emerge because of them. And they often are guided by the

choice of the underlying basis like polynomial basis or normal basis ok. 
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So, we are already discussed about thus that here is a quick recap on that. So, there are

two types of bases ok. So, one is called as a polynomial base and other one is called as an

normal base. So, if you take as you know like for every extension field like GF 2 power

of m that is an irreducible polynomial as we have discussed, p x whose degree is m if the

field is GF 2 power of m and let alpha be the root of p x ok. So, if alpha is a root of the p

of of p x, then the set one alpha alpha square so on till alpha to the power of m minus 1 is

called the polynomial base ok. So, there are m elements in this base ok. So, therefore we

can express any field element as an linear combination of these bases elements ok. 

Likewise, there is also another bases which is called as the normal bases. So, in normal

bases again you have p x which is an irreducible polynomial over GF 2 power of m, and

let alpha be the root of p x ok. So, then your set alpha power alpha, alpha square, again

alpha to the power of 2 power of 2, so these are all powers of 2 of alpha ok. Likewise,

you again do m such our m such powers of 2 that means, the final result is alpha to the

power of 2 to the power of m minus 1 ok so, these are called as a normal bases, if the n

elements are linearly independent ok. 

So, example like for example GF p power of k, you can actually in generalize it to say

GF p power of k or also. In that case the normal bases elements will be alpha to the

power of p power of 0, alpha to the power of p power of 2, so until alpha to the power of

p power of k minus 1. So, again there are k since this is k, there are k elements is the

normal bases. 

As a special example which we will be using in our work. For example, consider GF 2

power of 4 square ok. In GF 2 power of 4 square, there are two bases elements ok; one is

alpha, the other one is alpha to the power of 60 ok, so that is the essentially you know

like the normal bases of GF 2 power of 4 square ok. Likewise, we will have we will have

being normal bases for GF 2 power of 2 ok and essentially that will be alpha and alpha to

the power of 4 ok. So, we can essentially enumerate the normal bases elements using this

idea ok. 
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So, therefore right first so let us try to effort first of all kind address or answer to these

question. How many ways can you implement the mapping mean the AES S-box ok? So,

by using this concept of what is called as the hierarchical decomposition or it is often

also called as tower fields ok. So, first consider the mapping from GF 2 power of 8 to GF

2 power of 4 square ok. So, this is controlled by the polynomial r Y, which is essentially

nothing but Y square plus tau Y plus mu ok. So, this is an irreducible polynomial in GF 2

power of 4 square ok. 

So, now you know like for we as we will discussing right for efficiency we choose this

tau equal to 1, because you will see this tau appears in many output equations, therefore

to make it you know like efficient we will we will be we can actually plugin tau equal to

1 can be fixed tau is equal to 1. 

So, note that we cannot make both mu and tau 1. Because, if you make both tau and tau

and mu 1, then this turns out to be Y square plus Y plus 1 ok, and that is a actually an

irreducible  polynomial  for  GF 2 power of  2  ok.  So,  Y squared plus  Y plus  1 is  an

irreducible polynomial for GF 2 power of 2, which is actually sub field of GF 2 power of

4 ok. But, what we want is that we want that the choice of mu should be such that r Y

that is Y square plus tau Y plus mu. So, if you plug tau equal to 1, Y square plus Y plus

mu is irreducible over GF 2 power of 4 ok. 



And if you want to make Y square plus Y plus mu irreducible over GF 2 power of 4, then

an then mu needs to satisfy or mu is essentially a root of the irreducible polynomial in

GF 2 power of 4 ok, so that means right if you express mu as a polynomial in, then you

know it does not factor in the field GF 2 power of 4 ok.

So, there are two irreducible polynomials right.  So, therefore mu can take 8 possible

values so mu can take 8 possible values, you can see that you know like the 4 the 4 roots

will  come from this  equation  x  power  of  4  plus  x  power  of  3  plus  1,  which  is  an

irreducible polynomial of GF 2 power of 4. 

You can get distinct 4 roots, if you solve the penta pentanomial x to the power 4 plus x to

the power of t3 plus x square plus x plus 1, which is also another irreducible polynomial

of a different kind for GF 2 power of 4 ok. So, therefore this equation or this polynomial

give 4 roots, this polynomial will give 4 roots. And therefore, in total you have got 8

possible values of mu, you can have 8 possible choices for mu ok. But, note that we have

fixed tau as 1 in our discuss in our implementations. 
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So, likewise you can you know you can actually  continue your decomposition in an

hierarchical  fashion.  The  field  computations  in  GF 2  power  of  4  are  performed  by

expressing the elements. Now, in the composite field GF 2 power of 2 ok. 



So, again this is control by the modulo of polynomial by taking modulo of the with the

irreducible polynomial s Z where s Z is now Z square plus T Z plus N ok. Note that I

have  used  you know like  Y to  denote  the  tough field  Y means,  the  I  have  use  the

indeterminate Y to denote the tough field that is GF 2 power of 4 square. And I have use

the indeterminate Z to denote the field GF 2 power of 2 power of 2 GF 2 power of 2

whole power of 2 ok. 

So, therefore here again write this is an irreducible polynomial over GF 2 power of 2. So,

again  you know like  we make  T equal  to  1  like  previous  case.  Like  when we had

previously we made tau 1, now we make T 1 and N chosen, so that so this capital N is

chosen, so that it can be the root of the irreducible polynomial x square plus x plus 1 over

GF 2 power of 2 ok. So, therefore write this equation as got two roots and therefore N

can take two possible values ok. 

So, now we have kind of enumerated how many values mu can take and how many

values N can take. In order to understand, how many such circuits we can realize with

them ok. So, the circuit complexity will be decided by these constants that is mu and N

as  well  as  the  underlying  bases  of  your  implementation,  whether  you  are  choosing

polynomial bases or whether you are using normal bases ok. 
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So, for example right if you are using polynomial bases for each choice of mu that is

suppose I fix mu, then your polynomial r Y gets fixed right, because your r Y is Y square

plus tau Y plus mu, so tau is 1. If I fix mu, then this polynomial gets fixed. And therefore,

write of this equation that is Y square plus Y plus mu, we left two roots ok.

Each of this roots can be independently used as the polynomial bases. So, I can choose

either the polynomial bases as Y 1 comma 1 or I can choose the polynomial the bases as

Y 2 comma 1, both of them are polynomial bases. But, if I want the nominal basis, then

there are two roots again ok. And as we have discussed the roots will be Y and Y power

of 16, because this field is GF 2 power of 4 square, so this is my normal basis. And both

the roots will give me one normal basis ok. So, in total we will have three such basis

representations ok.

So,  again  you know like  thus  there  are  two choices,  two polynomial  basis  and one

normal basis. Likewise, for each step of the hierarchy that means when you are going for

GF 2 power of 8 to GF 2 power of 4 square  and likewise from GF 2 power of 4 to GF 2

power of 2, you essentially have got three basis choices ok. 

So, therefore now if we total the count total number of circuit configurations that we are

trying to explore here is 8 multiplied by 3 ok that is your the you know like the tough

field that is 8 power of 3 that is 24 ok and this is 2 into 3 which is 6 that is the that is

because there are eight choices of mu and there are three choice of basis. So, it is 24 total

possible ways.

Likewise for GF 2 power of 2, you have got two choices for N and we have got three

basis choices, so there are six of choices. For the smaller mode field like the smaller field

there is no I mean there is no variation, so you just have got one, but you again can have

three basis choices.

So, this is for when we are represent representing GF 2 power of 2 in terms of GF 2 ok.

So, we have got three such transformation, which we are doing. Like GF 2 power of 8,

you are writing as GF 2 power of 4 whole square. GF 2 power of 4 you are breaking as

GF 2 power of 2 and GF 2 power of 2, you are breaking up as GF 2 whole power of 2, so

you are writing it in terms of GF 2 ok. 



So, the so again I am repeating this you are writing GF 2 power of 8 in terms of GF 2

power of 4, you are so here there are this is the case which is governing that. Likewise,

you are expressing GF 2 power of 4 in terms of GF 2 GF 2 power of 2 that is this case ok

and likewise you are writing GF 2 power of 2 in terms of GF 2 and that is case ok.

So, totally you write the number of cases this actually should be a product ok, so please

replace this by a product. This as multiplication of 8 into 3 into 2 into 3 into 1 into 3 and

this totally counts to 432 ok. So, there are totally 432 possible ways in which we can

have circuits. And you can have what we want to kind of explore is this I would say

design space ok and we want to see that where are the opportunities of optimization ok. 
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So, basically right I mean so let us try to look it in look them look in to the in the one by

one. So, first of all let the irreducible polynomial of an element. So, remember that now

we are considering this we are considering that GF 2 power of 8 or element in GF in 2

power of 8 has been transformed to an element in GF 2 power of 4 square ok. 

So, there my polynomial is r Y, which is Y square plus tau Y plus mu ok and let an

element  in  the  composite  field  therefore  so in  the  so  therefore  it  will  look like  this

gamma 1. So, gamma is an element in this field and I can write it as gamma 1 Y plus

gamma 0 ok. So, this is my polynomial basis way of writing it, I am writing this using

the polynomial basis ok. 



So, Y is essentially the root of this equation and I choose one such value of Y. And

therefore, I can express gamma as gamma 1 Y plus gamma 0 ok. So, this is what we have

already discussed in one of our previous classes, how we can write the inverse of gamma

say gamma 1 plus gamma 0’s inverse is delta 1 Y plus delta 0. And therefore, write delta

1 and delta 0 can be enumerated in this  way ok. So, this  is something that we have

already discussed in one of our previous classes.

So, I am not repeating that derivation. But, I am trying to stress here that tau for example

appears in both the equations ok and that is essentially what is motivating us to say tau as

1. So, as both the equations gets simplified ok. As tau appears in both the equations, we

set it to 1 ok.
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So, now if you do that, then you can do some more simplifications. For example, you can

write this for example if you observe this term, which is gamma 0 square plus gamma 0

gamma 1 plus gamma 1 squared mu. Note that now I can take gamma 0 common from

here. And therefore, I can write this as gamma 0 into gamma 0 plus gamma 1 plus mu

gamma 1 square ok.

So, this is again I am taking an inverse. Note that this element is now in GF 2 power of 4

ok, likewise all this multiplications are now in GF 2 power of 4 ok. So, if you want to

describe this in the form of a circuit this how it will look like. So, I have got my inputs



gamma 1 and gamma 0. Gamma 1 is the higher nibble, gamma 0 is the lower nibble. And

if I want to say calculate the output delta 1 and delta 1, so then I can just trying to

understand the relation of this circuit with this equations ok. 

So, first of all let us start with delta 1. So, delta 1 is nothing but we are computing an

inverse of the part which is inside the first parenthesis. So, if you observe here, we take

an XOR of gamma 1 and gamma 0. So, this is essentially computing this part gamma 1

plus gamma 0 and then you are multiplying this with gamma 0. So, note that this XOR is

in GF 2 power of 4, this multiplication is also in GF 2 power of 4. So, this is where we

using GF 2 power of 4 multiply. 

So, then we are adding this with an output which is mu gamma 1 square ok. So, this part

that is mu gamma 1 square is where I am feeding one input, if the input is gamma 1. And

this is computing mu gamma square which is if I feed in gamma 1 as input, the output

will be mu gamma 1 square ok. So, this mu gamma 1 square is now added with this part,

so therefore gamma 0 into gamma 0 plus gamma 1. And then the total part right the total

essentially this output is fade GF 2 power of 4 inversion circuit.

So, therefore I get this inversion and this inversion is now multiplied with or has to be

multiplied with a component. So, therefore this right is essentially if you observe if you

observed the delta 1 circuit, then I am multiplying this with gamma 1 ok. So, therefore if

I multiply gamma 1, I get this part which is delta 1. And if I multiply gamma 0 plus

gamma 1 that means, I just take this part out and again I multiply with the GF 2 power of

4 multiply with the output of this inversion circuit, then I get delta 0 ok.

So,  this  pretty  much  explains  the  circuit  and  shows  how  it  corresponds  with  this

equations ok. And note that this operation is something that we will be trying to stress in

our talk that is what we call as scaling. So, this so the idea is that this mu is a constant,

and  therefore  write  when  you  are  try  to  implement  and  circuit  where  do  you  are

multiplying a constant you do not apply a full floor multiplier, because that will lead to

wastage of gates. Rather you optimize your circuit and we call that special circuit which

multipliers multiplies with a constant as a scaling circuit ok.

In particular here, we are actually do a squaring and then scaling ok. And therefore, this

circuit is what we will be calling as scaling and squaring ok. So, therefore we will first



square  and  then  scale.  And  we  will  see  that  why  we  do  that  this  there  is  a  lot  of

opportunity of optimization, when you considered this circuit ok. 
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So, now what we want to observe is that therefore this brings us to this scaling and

squaring operation. And we want to essentially do a scaling and squaring that means, we

want implement this step mu into gamma square ok. And we want to see how we can

efficiently implement this. So, the product in GF 2 power of 4 is similarly performed by

expressing an elements in GF 2 power of 2. So, therefore, now we are considering the

products in GF 2 power of 4. So, if you observe the circuit here, these operations are in

GF 2 power of 4.

So, now I am expressing or we are trying to kind of hierarchically go into this circuit and

imagine that this GF 2 power of 4 is now written recursively in terms of GF 2 power of 2

ok. So, therefore right this is the 4 bit operation, GF 2 power of 2 will again have two

parts, each of them having two bits ok. So, totally it will have four parts. 

So, now, therefore, you can actually express the product in GF 2 power of 4 in a similar

way as element in GF 2 power of 2 whole power of 2 and the for that right consider the

product of two elements. So, again now we will be using Z as I have discussed here. So,

Z is my inter indeterminant in this field. And therefore, one elements are say gamma and

delta which I want to implement which I want to multiply.



So, gamma is an element in GF 2 power of 2 whole power of 2. And it when I express

gamma as capital gamma 1 Z plus capital gamma 0, then gamma 0 or capital gamma 0

and capital  gamma 1 are both elements of GF 2 power of 2 ok. Likewise your delta

which is another element in GF to power of 2 whole power of 2 ok, we can also be

written as capital delta 1 Z plus capital delta 0 and each of this delta capital delta 0 and

capital delta 1 belong to the sub field which is GF 2 power of 2. 

So, now when I multiplying these two elements, I have to use an irreducible polynomial

as usual. And the irreducible polynomial in this case is s Z which is nothing but Z square

plus Z plus capital N. So, when I am multiplying these two things, we can observe that

there will be kind of term will I will get a Z squared ok. And therefore, this simplification

is a result of the fact that I have replaced Z square with Z plus N ok. So, therefore, the

moment I replaced Z squared with Z plus N, you can actually verify it you should be able

to get this equation. So, therefore, I replace Z square as Z plus N and the essentially this

should follow. 

So, now, if when I am try to do a scaling right, scaling is nothing but a multiplication, but

only  that  of  the  fact  is  one  of  the  multiplication  input  or  one  of  the  multiplication

argument is a constant ok. So, in this case my say you know like for example, your input

is gamma 1 Z plus gamma 0, but you are to trying to scale with this input that is delta 1 Z

plus delta 0 ok. So, therefore, this mu right essentially this is nothing but mu and mu we

can actually control ok.

So, for example, right as I have said that I can set delta 1 you know like I will got two

inputs two components here delta 1 and delta 0. Suppose, I make delta 0 as 0, that means,

I said delta 0 equal to 0. Note that I cannot make delta 1 as 0, because if I do delta 1 as 0,

then  you  cannot  make  the  polynomial  r  Y irreducible  over  GF  2  power  of  4.  So,

therefore, I will have some restriction. And with that restriction I can make mu is equal

to delta 1 Z ok. And we will further choose we was as we will see later on that delta 1,

we will we will make it as N inverse or the inverse of N. And we will make N as delta 1

inverse to simplify the scaling operation ok. For just keep in mind that mu is nothing but

delta 1 Z that means I have said delta 0 to 0 ok.
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So, with this inputs when I am trying to do scaling and squaring operation, so the choice

of N right, so therefore, you can observe that the choice of N when you are trying you

know like essentially as we have said that the choice of N also cannot be arbitrary. If the

choice of N is has to be such that it makes this polynomial s Z, which is equal to Z

square plus Z plus capital N irreducible over GF 2 power of 2 ok. So, note that there for

that purpose N has to be a root of the polynomial t W, which is again we have when you

are expressing GF 2 power of 2 in terms of GF 2 whole power of 2 ok, that means, you

are expressing it as elements of GF 2 now ok.

So, then the corresponding polynomial is t W, which is omega square plus omega plus 1

ok. And the and you can easily observe that the roots cannot be 0 here, because if I plug

in 0, I get 1 if I plug in 1, I also get 1. So, therefore, 0 and 1 cannot be roots of this

equation, rather let me denote the roots as N and N plus 1. Note that the sum of the roots

right of this equation has to be 1, but from the theory of equations ok. And the let us just

symbolically  denote  one  of  the  roots  to  be  N  and  therefore,  the  correspondent

correspondingly the other root is N plus 1. 

So, depending upon the roots therefore, the polynomial, so depending upon the roots the

chosen for the polynomial basis W comma 1 that means, you essentially for the lower

field, you have got the basis as W comma 1 ok. And the therefore, write either N will be

equal to omega or N will be equal to W or N square will be equal to W ok. So, you



essentially have got two polynomial basis choices. You can either make N as omega W

or you can make N square as W ok. Note that N square will be equal to N plus 1, because

you know like N square plus N plus 1 will be equal to 0 ok.

And note that when you are talking about you know like this circuits right, then N to the

power of minus 1 is equal to N square ok, so that is equal to N plus 1 that is N to the

power of minus 1 is equal to N square which is equal to N plus 1 ok. So, these are small

you know like important observations which we will be using in our optimizations in the

you know like in the following discussion.

So, these optima or these small tricks right will lead to a very efficiency scaling and

squaring circuits. So, therefore, these are something that we need to keep in perspective.

So, note that you can easily verify these things for example, what you can do is that you

can verify these results quite easily ok. If you can understand the does the field structure

that we have been discussed. 
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So, now with this background let us say you know like just let us try to understand this

scaling  and squaring  circuit.  So,  for  example,  like  when I  am try  to  do mu gamma

square, so mu gamma square is nothing but mu multiplied with gamma square. So, what

is gamma, gamma is capital gamma 1 Z plus gamma 0 and I am doing a whole square on

that  so  that  is  equal  to  mu into  gamma  1  Z  plus  gamma  0  whole  square  and  that



essentially you can write as gamma 1 square. Again you can write it as Z square plus

gamma 0 square, but note that you can replace Z square as Z plus N and therefore, with

that simplification you will get this as your result ok. 

So, now if I substitute mu as delta 1 Z, remember delta 0 I mean delta 1 cannot be 0. So,

mu is delta 1 Z and I said that I have plugged in delta 1 as N to the power of minus 1,

and I can also write N to the power of minus 1 as N squared Z ok. And if I do that, then

mu gamma square or essentially this results in. So, if I plug in instead of mu I write N

square Z, so I got N square Z multiplied with gamma 1 square Z plus gamma 0 square

plus N gamma 1 square ok. And this turns out to be N square. So, I just take N square

and I do an operation here. 

So, N square multiplied with gamma 1 square and note that Z into Z I will get Z square

plus Z, that means, Z comes here and then I multiply N square with this part that is N

square into  gamma 0 square plus  N square  into  N that  means  N cube now N cube

becomes 1 ok. So, therefore, I just get gamma 1 square ok. So, therefore, this essentially

is equal to writing as N square gamma 1 square Z square which is the first. 

So,  now, let  me just  conclude  this  part  by discussing about  the final  effect  of these

optimizations on scaling and squaring ok. So, therefore, scaling and squaring is nothing

but calculating mu into gamma square. Remember that gamma is now denoted as gamma

1 Z plus gamma 0 and then I am doing a whole square on that. So, if I do that I will get

gamma  1  square  Z  square  plus  gamma  0  square,  remember  that  I  am  doing  in

characteristic two and then we will replace Z square with Z plus N ok. 

So, therefore, if you do that you will get this as your result and remember that mu which

is with which you are doing the scaling is a constant and that is essentially nothing but

delta 1 Z ok. Remember delta 1 cannot be 0 so, it is some delta 1 delta 1 Z. And this delta

1 is say N to the power of minus 1 as we have taken as choice ok. So, N to the power of

minus 1 is again equal to N square, because N to the power of 3 is 1 ok. You can easily

understand this because N is an element in GF 2 power of 2 ok. If you do that write, then

there four elements and therefore, write you can verify from formats little theorem that

you will get N to the power of 3 as 1 ok. 



So, therefore, write we can actually write N to the power of minus 1 Z as N square Z ok,

and therefore, write it turns out that mu gamma square is nothing but I am writing N

square Z multiply it  with gamma square which is  gamma 1 square Z plus gamma 0

square  plus  N gamma 1  square.  So,  now, if  I  apply  N square  over  this  part  in  the

parenthesis,  I will  get N square gamma 1 square Z square plus Z multiplied with N

square gamma 0 square which where I am multiplying this over this and then I have got

N to the power of 2 into N which is N cube. Note that N cube is 1, so I get gamma 1

square. 

So, this you can again write as N square gamma 1 square Z square plus Z into N square

gamma 0 square plus gamma 1 square, this just copying this result. So, this is equal to N

square gamma 1 square and now I can write Z square as Z plus N. So, replace Z square

with Z plus N because I am doing a modulo with Z square plus Z plus N plus Z into N

gamma N square gamma 0 square plus gamma 1 square. So, therefore, now if I just take

the coefficients of Z and the constant part, then I will have Z into N gamma 1 squared

plus N square gamma 0 square plus gamma 1 square ok. 

So, note that you can easily verify that I have got N square is easy to verify that we have

got N square gamma 0 square which comes here. But the other term that means, if I take

gamma 1 square I will get N square plus 1 ok. And N square plus 1 is nothing but N,

because  N  square  plus  N  plus  1  is  equal  to  0  ok.  So,  therefore  right  this  is  your

corresponding operation when you have done scaling and squaring,  this  is your final

result here which is the result in this point. So, now, if you observe right, you can see that

we have got scaling there are some intermediate scalings which we are doing. 

In order to realize this scaling hierarchically you are doing other few you are do few

more  scaling.  For  example,  here  you  are  doing  a  scaling  with  N  because  your

multiplying with N ok. And likewise here you are doing a scaling with N square ok. And

the other operation is of course, you are doing an addition. So, you are also doing an

addition here which you are doing ok. So, these operations are now essentially also needs

to be tackled and needs to be again implemented. So, these operations can in turn be

therefore,  converted  to  elements  in  GF 2  power  of  2  whole  power  of  2  and  again

computed in the sub field GF 2 power of 2 ok. 



So,  these  operations  are  in  GF  2  power  of  4  because  you  have  now  successfully

decomposed a GF 2 power of 8 operation into GF 2 power of 4. So, therefore, these

operations that is the scaling the addition, all of them takes place in GF 2 power of 4. But

you can also equivalently write GF 2 power of 4 isomorphically in this field GF 2 power

of 2 whole power of 2 ok. And therefore, write you can compute in the subfield now GF

2 power of 2 modulo again s Z which is equal to Z square plus Z plus N ok. 

So, therefore right this is something that we need to essentially again take a look at and

we need to kind of continue about how we can you know like or what is the impact of or

of this optimizations on this overall circuit ok and that is will what we will take up in the

next class ok.

Thank you.


