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So, welcome to this class on Hardware Security. So, we shall be discussing on what we

were essentially we shall be continuing on what we were discussing in the last class on

various hardware techniques for implementing advanced encryption standards. 

(Refer Slide Time: 00:35)

So, so to start with today we shall be discussing in details about how we can express the

entire AES in composite field something that we are already discussing in the last class,

we shall continue with that. In particular, we shall be looking into how a mix column is

implemented, along with an S-box or various approaches for implementing S-boxes. 

So, and finally right we shall be looking into how we can design, and we shall be also

looking into how we can design a combined structure of between the encryption unit and

the decryption unit that is how we can combine the encryptor and the decryptor of AES.

And finally, we take  a  look  at  one  of  the  very  new are  you know like  nearly  new

implementations on AES state of the art implementation of AES, which is integrated in

most of our modern Intel processors. 
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So, to with this background right let us take a look and to what we have to discuss. So, to

start with, we have already discussed this in the last class that suppose let us consider the

AES sub byte operation. So, this is the essential steps that we do in the AES sub byte, we

take a finite field inverse, we do an affine transformation that means, a pre-multiply with

a fixed matrix A followed with by adding the vector B.

So, now one approach could be that we do this in composite fields. But, when we do this

in composite field, there is an always and conversion that we do from the standard field

to the composite field and back. So, this will incur an overhead. So, one approach that is

essentially advised is that let us transform the entire AES in composite fields, so that at

the  very  beginning  wherever  I  have  the  raw  plaintext  and  the  key,  there  we  do  a

transformation into the composite field.

We do the entire AES in one of in the composite field not only the only the sub bytes, but

also the other operations like meets columns and things like that. And finally, right we

get the result that is the cipher text in the composite field, we bring back the result to its

normal field by taking the inverse mapping or applying the inverse mapping. 

So, in this case let us take a look about that is about you know like suppose it is not only

that  the  inverse  has  been  done in  composite  field,  what  if  I  do  the  entire  sub  byte

operation in composite field that means, along with the affine mapping. In that case,



what we have to do is that we have to slightly adjust the matrices A and B, if you want to

do the operation in composite field. So, how do we do that is illustrated here.

So, if I apply the transformation from GF 2 to the power of 8 to the composite field, say

GF 2 to the power of 4 square by the mapping T or the matrix T. Then essentially; we

know that Y dash is equal to T Y, so we apply T on both sides of this equation. So, we get

T A X inverse plus T B that is T has been applied to both A X inverse as well as B. 

Now, we can easily write T A X inverse as T A T inverse multiplied with T X inverse, so

note that T inverse with T is I or the identity matrix and plus T B. So, this T A T inverse

is what I call as A dash, and this T X inverse or T applied on X inverse is what is called

as  X  dash  ok,  and  T  B  has  been  denoted  as  B  dash.  So,  therefore  these  are  my

transformed affine matrices A and B ok. So, they are been updated by T A T inverse and

B dash has been updated as T B ok. 

So, an important point which may be emphasized here is that because of isomorphism

property note that what we are doing right here is important to observe. So, what we are

doing here is we are basically denoting this T X inverse as X dash right, so as if this is

the  inverse  in  the  composite  fields.  So,  note  that  it  is  correct  why  because  of  the

isomorphism  property  one  can  calculate  X  inverse  in  the  original  field,  and  then

transformed by apply applying T, it can transform it into the composite field or one can

also apply or convert X directly into the composite field, and then take its inverse right.

So, therefore this is an identity in because of the isomorphism property, so that implies

that I can substitute these T X inverse as T X whole inverse, so that means what that

means, I am doing the inverse in the composite field X was originally in the GF 2 to the

power was in GF 2 to the power of 8 by applying T X, I have transformed it into the

composite field.

And now this  operation  right  is  done in  the  composite  field  ok,  so that  is  why this

equation that is Y dash equal to A dash X dash plus B dash is in the composite field that

means, X dash is in the composite field, A dash and B dash also has been adjusted to do

the transformation in the composite field without requiring this transformation from the

GF 2 power of 8 to GF 2 power of 4 squared and vice versa at every step ok, so that is

why you have you now have a consolidated sub bytes which where this entire sub bytes



has been expressed in composite fields ok, so that will reduce your overheads incurred

due to field transformations. 
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So, now there are some more interesting observations here also. Like here is an example,

so the irreducible polynomial that we choose here, so that is as we have discussed in the

prior classes as well. We have got say Y square plus Y plus tau, where tau is a primitive

element of GF 2 to the power of 4 ok.

So, we choose so this is an example of tau that we choose say tau is omega power of 14,

where omega is X that is 0010. So, this is like just an element in GF 2 power of 4. And

we raise it to the power of 2 power of 14 to serve as a value of tau ok. So, you can have

different such values of such values or such (Refer Time: 06:13) candidates that you can

choose, but it is important to note that tau the tau is a primitive element of GF 2 power of

4 ok. So, as we know that there are different primitive elements of GF 2 power of 4, so

you can actually play around with those values. And you can you know like if you if you

choose different values of tau, one you can easily understand that you will get different

choices for the matrix A A dash also ok.

So, in this case for example, a key point is that depending on the choice of the matrix A

dash will change. And therefore, it will have different 01 values. Like for example, in

this case the value of or the matrix A has been transformed into A dash, and it looks like



this  ok.  So, you can observe that  the number of once in the original  matrix  of A is

significantly large compared to the number of ones, which we have in A dash ok.

And therefore, right it is an interesting choice, because in this case the number of once is

around 40, and here it is around 18. So, therefore the number of gates or the number of

XOR’s which you will require to implement this transformation will be much less, when

you  are  doing  the  operation  in  the  composite  fields  ok,  when  you  are  doing  it  in

composite fields. So, therefore this naturally gives a nice mechanism of how you can

reduce the cost of your implementations ok. So, you can try to play around with different

choices, and you can try to see where you get exactly minimal number of 1s for example

in A dash ok, so it could be an interesting exercise in itself. 
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So, so therefore right I mean we would like to now transform, so let us take I mean

concrete example. So, we had supposed transforming GF 2 to the power of 8 to GF 2 to

the power of 4 square. And we have already discussed about pre efficient techniques, and

techniques about how we can do these transformations previously. But, note that in the

efficient technique that we discussed right in the last class or in one of my last classes

they the polynomial so we need a mapping of the basis vectors ok.

So, in that case right the field polynomials were assumed to be a primitive polynomial.

But, note that in case of AES the polynomial R Z, which is equal to Z power of 8 plus Z

power of 4 plus Z power of 3 plus Z plus 1 is irreducible, but is not primitive ok. So, we



do not directly apply that technique, but rather since the field is small we can actually do

our exhaustive analysis ok. So, what we can do is that, we can take the primitive element

of GF 2 power of 8 say gamma, and we can map it to a primitive element of GF 2 power

of 4 square say alpha ok.

So, what we can do is for all the values from 0 to 255 that means for all the 256 values I

just do this mapping gamma power of i 2 alpha power of i, and get a mapping ok. So, it

is interesting to check that whether the multiplicative homomorphism, and the additive

homomorphism are satisfied for these choices ok.

(Refer Slide Time: 09:01)

So, you know like suppose we get like a nice I mean it is done like we get this mapping,

and it and it satisfies the multiplicative and the homomorphic property. Then, this is an

candidate matrix ok. So, you can act again you know like and get different matrices, but

this matrix is say our choice ok. So, you can get more illustrations about this matrix is in

this paper, which was published in CHES in 2001.

So, so in this case right if you take this mapping, there are certain interesting points that

you can observe is that the last column for example in this matrix is one, which means

like in unity element in GF 2 power of 8, we will get mapped into GF 2 power of 4

square also as a unity element ok. So, likewise right you can also observe that is 0 will

get mapped into 0, because that is obvious. But, for the other parts right it is interesting

that to see how they work ok. 



So, I give you an example here of how the mapping looks for or non-trivial input. So, for

example, two right is an element in GF 2 to the power of 8, suppose the two is an field

element, you can also write two in curly braces to indicate that it is not two per say. So,

you can actually you know like denote these two as this value say 0000 and 0010 that

stands for x basically. 

So, therefore T 2 would be in now GF 2 to the power of 4 square. So, if I apply this

matrix on two, then I should get the result in my composite field GF 2 power of 4 square.

So, this turns out to be this column here that is this column, because you note that there

is only 1 1 here ok. So, therefore this turns out to be this column, and that is 0 0 1 0

followed by triple 1 0 ok. So, now note that this element is in the composite field. So,

how do we read this, so this part is my top part that is this part has got I mean is the

coefficient of x ok, whereas this part is the constant part ok.

So, therefore this part has a as that the coefficient value here is alpha, because here the

coefficient  is itself  you know it  can be denoted as alpha,  where alpha is  a primitive

element of GF 2 to the power of 4 ok. So, you can also say that in GF 2 to the power of 4

this is again x ok. We are there are you are using four four bits to denote the value ok.

So, likewise this value 1 1 1 0, so I leave it to an exercise to verify that you can take

alpha. And if you raise it to the power of 11, and do a modulo right which is x power of 4

plus x plus 1, which is an irreducible polynomial in GF 2 power of 4, then you will get

alpha power of 11 ok. And if you get alpha power 11, then this alpha power 11 stands for

this vector that is in this in the field GF 2 to the power of 4, this is x cubed plus x square

plus x ok, so you should get that value. So, if you do that right in a compact way, you can

denote them as alpha x plus alpha power of 11 ok. So, now what you can what the reason

why I show in particular for 2 is will  be understood, if you consider now the mixed

column matrix ok.
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So, remember that in the mix column matrix, we have got these elements. And as I said

that I now I want to express the entire AES in composite fields, it means that I have to

also  transform  these  elements  into  the  composite  fields  ok.  So,  these  are  constant

elements. They need to be mapped into say T 2, T 3, T 1 and so on. Of course T 1 will be

1, but T 2 and T 3 will be non-trivial. So, you have to basically calculate it ok. 

So, therefore write T 1 is T 4 so remember that when I am doing this operation, then my

elements that I am multiplying them are now not in GF 2 power of 8, but in GF 2 power

of 4 square. So, therefore they will be they will be represented as say a 1 x plus a naught,

so if I multiply with T 1, I will get a 1 x plus a naught, because T 1 is one itself. For T 2

right T 2 when I multiply with a 1 x plus a naught, so note that T 2 right essentially is as

we have found out in the previous discussion, it is alpha x plus alpha to the power of 11.

So, therefore I will take now alpha x to the power of 11, and alpha x plus alpha to the

power of 11, and multiply it with a 1 x plus a naught ok.

So, again I leave it to as an exercise to check that this equation will be satisfied. You can

observe that when there will be instances, when you get x squared, but that x square

needs to be you know like converted back into the field GF 2 power of 4 squared by

taking an XOR or you know like by considering a modulo with this polynomial, which is

an irreducible polynomial of the composite field GF 2 power of 4 square.



So,  what  is  the  polynomial  x  squared  plus  x  plus  alpha  power  of  14.  So,  therefore

whenever you get x squared, you substitute that with x plus alpha power of 14. So, if you

do that right every element here can be represented in this form of a 1 x plus a naught,

where a 1 and a naught are elements in GF 2 power of 4 square. 

So, in this case right you will get this particular example here. So, therefore you can

observe that you are essentially doing more operations in the sense like you are doing

additions,  but note that the multiplications that you are doing are now in the smaller

field, which is GF 2 power of 4. And that is much more efficient, well then when you are

doing what an operation in GF 2 power of 8 ok. So, so therefore right there are also there

are some constant multiplications. So, for example, alpha power of 11 is a constant and

so on. So, therefore these multiplications for these multiplications you do not need a

dedicated multiplier, but you can actually do it much in a much more efficient manner

ok. 

So, so finally right you can also note that T 3, when you are doing T 3 into so that is how

we you are doing T 2. But, when you are calculating T 3 right with multiplying it, you

need not again multiply with T 3, but rather you do at T 2 into this plus the original value

like with what we did for the original mixed column operation instead of multiplying 3

into x we did 2 into x and then added x ok. So, you can again apply the same approach

even in the composite fields ok. 
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So, so once you have done that essentially you have transformed the entire operations

like  you  have  transformed  the  mix  columns,  you  have  transformed  the  shift  rows

essentially will be simple, because it is just wiring, so there is nothing to be altered here.

The bytes up or the sub bytes, we have already seen how to transform. The add round

key again will be again similar, so you need not make any drastic any difference there.

So, therefore right this is how your encryption flow will probably look like ok. 

So, now I want to create its decryption algorithm. So, I suppose I want to implement in

one single  chip,  I  want  to  implement  both  the  encryptor  and the  decryptor. Do you

remember that this is a very you know like viable requirement, when you want to or you

know like put your encryptor or encryption in a transmitter, which can work both of the

transmission unit as well a receiver unit. So, you need both the encryption you need and

the decryption you need in C 2 inside a single chip ok. 

So,  therefore  right  one  thing  you  can  observe  here  that  when  you  are  seeing  the

decryption operation,  then this is just the decryption is just the reverse of encryption

right. So, therefore here the final steps are observed if you observe right, you have an add

round key. And then you are giving the cipher text, you are exporting the cipher text.

This should be the first step, when you are doing decryption ok.

So, likewise note that in the first round, there is no mix columns or the I mean in the final

round there is no mix columns. So, you have got a byte sub, shift row followed by add

round key. When you are doing the inverse you are doing an inverse shift row, which just

cancels out this shift row operation; you are doing an inverse byte sub, which cancels out

this byte sub operation. And then you are again doing and doing an add round key or

which is again that round key the inverse of the add round key is add round key itself,

because add ground key is an idempotent operation. So, it is self invertible ok. So, you

need not do any change over there, and then you essentially do the remaining steps ok.

But, we can easily observe that here if you have got a single chip to work as both, then

the operations are not exactly synchronized. Like when you are doing a byte sub here,

you are doing say an inverse shift row here. So, basically it implies that it looks like you

need two separate dedicated paths for doing this to do this design in the in a single chip

ok. And that may have an cost, because that may have you know like an overhead that

that essentially can come up.



But, it  turns out that for AES you can actually you employ a couple of interest  very

simple tricks,  and you can rewrite  this  in this  way. So, you can write  this  such that

exactly they are balanced. Like if you are doing a byte sub here, you are doing an inverse

byte sub here, if you are doing a shift row here, you are doing an inverse shift row here,

if you are doing a mix columns here, you are doing an inverse mix columns here ok.

There is small change that you have to do that the change is that for the round keys like

which are intermediate that is if you leave out the fine the first round and the you know

the last round key, then you have to apply an inverse mix column operation to those. So,

you have to slightly adjust  the key scheduling ok, and that should be fine I  mean it

should be essentially able to get a decryption flow, which nicely synchronizes with the

encryption flow. So how does it work. 

(Refer Slide Time: 18:07)

So, there are two important two simple points to observe here. The first thing is that the

order of the inverse shift row, and the inverse shift bytes are indifferent ok. So, you can

actually easily swap them ok. The second thing is that, the order of the add round key

and the inverse mix columns can be inverted if the round key is slightly adapted ok. So,

let me quickly talk about this point here, which may be little non-trivial to see.
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So, I will try to explain this by this illustration. So, suppose you have got a simple linear

transformation, which you can think of your mix column operation or mix column means

like it is a is a linear transformation ok. So, therefore, I denote that by a matrix L, so that

that the previous operation right say the add round key, which you have done prior to that

is they denoted here as XOR. So, when you are doing x XOR with k, and then you are

applying this L mapping to get L x x XOR k.

So, now suppose I want to in I want to swap these positions that means, I want to kind of

push this XOR through the linear layer. If I do that, then essentially it turns out that I am

basically bringing the L before and I am putting the pushing the XOR later on. But, it is

easy to see that if I just make a small modification to my to the key that means, I passed

the k also through a linear layer, then the output remains the same right, it is again L of x

XOR k. So, therefore you can actually do this swap, but you have to just make a small

change to this L layer ok. So, therefore depending upon whether you want to push the L

before  or  you want  to  push the  L later  right,  you essentially  have  to  make a  small

adjustment to the secret key or to the round key so that is exactly being done here.
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And I try to explain this by a two round AES variant. Suppose, you take the add round

key, where this is your input you have got the state, these are expanded key 0. Then you

do a sub byte, then you do a shift row, and then you do a mix columns, and then again

you do an add round key not again that in the last round you have only a sub byte and a

shift row, and then you do an add round key ok. So, these are two round simple variant of

the original AES ok. You can easily without loss of generality extend this to 10 rounds of

AES 128. 

(Refer Slide Time: 20:31)



Now, if you consider the decryption unit of this, I have two again as I said work behind

like this ok. So, I have to start with these do the inverse operation of these and so on. So,

then  it  turns  out  exactly  like  these.  So,  I  do  the  add round key  now with  the  state

expanded key2 that is the final round key I do an XOR. I do an inverse shift byte, I do an

inverse sub byte, I do an inverse shift row, then I do an inverse sub bytes, then I do an

add round key, inverse mix columns, inverse shift row, inverse sub bytes, and finally an

add round key. 

Now, note that by the observation that we discussed just now or just prior to this you can

actually change few of these sequences ok. For example, I can easily interchange the

shift row and the sub byte operation. I can bring the sub bytes before, I can push the shift

row operation down ok. And likewise I can also swap this inverse mix column, and the

add round key. But, I have to make a small change in the expanded key ok.

So, when I am pushing the inverse mix columns right, before then I have to make I have

to apply in order to cancel that effect I have to apply and I have to apply this operation

also on the expanded key in order to counter that. So, whatever what I do is this, so

therefore when I the moment I change this right see I have brought up the inverse sub

byte pushed that the inverse shift row, I have changed these operations it is fine, but I

only  have  to  replace  these  expanded  key  by  an  equivalent  expanded  key, which  is

nothing but applying the inverse mix column on the key ok.

So, if you do this right, then essentially now and are now observed on this the way of

writing in the decryption, you can see that it is exactly the same or it looks exactly like

this the same as your decryption flow as your encryption flow ok. So, therefore, they are

nicely balanced and therefore you can essentially kind of shared the hardware’s and you

can do them in parallel ok. So, once you are do you have understood this right, now we

are in a position where we can share between the sub byte and the inverse sub byte, we

can share between the mix column and the inverse mix column. And try to see whether

we can save some gates ok.
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So, therefore right there are couple of interesting techniques, which people are proposed.

For example, right so this is what we have already discussed that the equivalent key-

schedule can be obtained by the apply the inverse mix columns, after the key-scheduling

algorithm. And this can be generalized easily to the full round of AES. So, thus we see

you know like that the equivalent decryption the sequence of the steps is similar. And

this helps in implementing an encryptor and the decryptor on a single chip ok. You can

essentially shared between the encryption and the decryption flow, and you can get a

nicely optimized design. 

(Refer Slide Time: 23:01)



So,  so  therefore  right  you can  actually  go  for  a  compact  encryption  and decryption

architecture.  So,  where  you  can  merge  the  operations  in  the  encryption  and  the

decryption into a single unit. For example, right you can observe here that what I have

tried to do is that I have tried to kind of represent this, if you compared with this with the

architecture  that  I  had  in  the  last  class,  where  I  had  a  separate  encryption  and  the

decryption block. But, now we are trying to think that whether we can combine these two

blocks into a single block ok. And that can save some gates, which is very important for

our hardware designs, the rest of the things remain same ok.

(Refer Slide Time: 23:35)

So, now therefore let us try to see how we can merge. Add round keys of course the same

in both encryption and decryption. The shift row and the inverse shift row only differ in

the direction of shifting. So, they are pretty easy to kind of do it in a single hardware, you

can just slightly program the hardware, and it should work in both the operations both in

the encryptor unit as well as in is in the decryption unit. 
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But, what is interesting is to see how we can merge the mixed columns ok. So, there are

couple of interesting approaches, which people are proposed. For example, right I mean

this is an example where you are essentially trying to merge the mix columns ok. So,

note that in inverse mix columns right the matrix the matrix is slightly different from the

mix column matrix, it is like not slightly is actually significantly different from the mix

column matrix. While in the mix column matrix you are nice operations like 2, 3, 1 and

so on, which were easy to implement.

But, in the inverse mix column, we have got pretty non-trivial values which essentially

are you know like are not easy to implement ok. For example, we have got the values

like E B D a 9 and so on, which are not easy to implement. So, how do you essentially

you know like can or how you can efficiently implement them, in particular when you

already  have  a  mixed  column implemented  ok.  So,  one  of  the  approaches  which  is

proposed by Satoh in Asia crypt in 2001 while he just follows, you write this matrix of

inverse mix column.

And expressed it as summation of the original mix column matrix with two more factors.

So, one of the factors is as shown here, and the second matrix is shown here ok. So, you

can easily obtain the observe that these matrices are pretty easy I mean in the sense like

they are all powers of two ok. So, therefore they should be easy to implement.



So, therefore right what you can do is that you can essentially have in one flow the but

the normal matrix ok, you can have and in this other place you have this element this

particular matrix. And therefore, right here you can get the original mix columns. But,

when you bring in this particular thing and you XOR this with this, then you get the final

inverse mix columns ok.

So, he basically kind essentially shared the or you know like utilize the origin or the

already hardware,  which is  present in the mix columns rather than having two stand

around you know one mix columns and one may inverse mix columns. So, when you are

doing inverse mix columns, you are also using the hardware which is already there in

your mix column matrix or for your mix column matrix.

So, it  turns out  that  when you are doing a separate  implementation,  then it  required

something like 592 gates. Whereas, if you do this merging, then you need something like

195 gates ok, so that is a significant improvement. There is a slight increase in the delay,

because now you have to wait there are the critical paths will slightly increase, but the

critical path increase is not as much as the saving that you get, for example it goes from

something like 5 gate units to 7 gate units ok.

(Refer Slide Time: 26:27)

There is another interesting approach, which was proposed later on which is essentially

where you basically you know like factor this mix column matrix. So, if you factor this

mix column matrix, then also you have got one of the factors as the mix column matrix,



whereas the other one is as follows shown here ok. And this is again you know like not

very costly to implement. So, it turns out that this requires something like 166 XOR’s,

and of course there is 32 bit MUX ok. So, here also you know you have around 195

units, and here you require around 166 XOR’s ok.

So, therefore you basically have got a MUX which is over there, and then you follow it

by an AES mix column operation. So, in one case you are basically passing you through

this matrix followed by a mix column to give you this inverse mix column operation. On

the other case when you are just using it for the encryption part that means when you

want it to configure get configured as only the mix column, then you have to bypass this

operation. So, you basically go through this path, and you just apply the mix columns ok.

So, again you have got a shared mix column and inverse mix columns operation. 
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So, likewise right you can also merge the S-boxes. So, when you merge the S-boxes,

then again there are certain you know like certain improvements that you can do. But, so

likewise right as we have seen that how we can merge the mix column operation, and the

inverse mix column operation. So, likewise we can also merge the S-box and the inverse

S-box operations ok, and that can also lead to opportunities of saving.

So, here is an example how we can do that. So, if you remember like when you are doing

the X or the S S box X. So, when you are doing the forward transformation, so you take

X, you map this X say to GF of 2 power of 4 square, which is in the composite field.



Suppose you do the inverse in the composite field ok, and then you do the reverse map

ok. So, then you bring and so if you do that right, then you get X, I mean you get S-box

X.

So, likewise right when you are doing decryption, you take S box X, you do the inverse

operation that means, the inverse mapping. You apply the reverse affine operations, you

can combine these two things to save some gates, because both of them are matrices.

And then you pass them through an inverse, which is in the composite field GF 2 power

of 4 square.

And finally, you do the reverse mapping to get the result back, which is in this case X.

So, you have basically fail in S-box X, and it since you are doing the inverse operation

you are getting X back so it is fine, because the core operation in both the S-boxes as

well as the inverse S-box is the finite field inverse ok. And that is the major hardware

which you are trying to share in both the data parts ok.

So, for example like if you go now for you if you compare it with say one standalone S-

box and an inverse S-box, then you would probably require something like 362 NAND

gate equivalents in a standard cell estimation. If you combine them and merge them, then

it reduces to something like 2034, so that is a significant amount of reduction in the gate

count ok. So, so therefore right I mean of course, you need to implement the inverse in

an efficient manner, and that is essentially studied in several works. In particular it is

nicely described in this paper by Canright, which is a very compact S-box for AES and it

is a very pioneering work and how you can efficiently implement the S box in composite

fields ok.



(Refer Slide Time: 29:51)

So, so therefore right I mean the there are different schools of design, and here is a quick

snapshot on the objectives. So, therefore some people have worked for latency, some

people have worked for area, so therefore you know like you would probably try to place

your design into different points in this spectra depending upon your application ok.

So, here are some bunch of interesting references, which people have you know like

developed to design efficient AES implementations ok. So, therefore for example, right I

may my focus may be only to make it very high speed in which case I should be looking

for designs, which are in this part of the spectrum. Whereas, if I want a lightweight

design, then I should be looking maybe at this point of the spectrum. Whereas, if I want

both, then probably I should be to gain these points of the spectrum, which are which

kind of nicely trades off both area as well as latency ok.

So, so in particular right this implementation which is shown here by Alam in date 2007

right. Then here in this design we try to develop an AES, which supports both one I mean

for all the three configurations of AES, like 128, 192, and 256, and still essentially trades

off nicely the area as well as latency ok. So, it can be an interesting read for our purpose.



(Refer Slide Time: 31:07)

So, so let us mean let me just conclude with the state of the art discussion. So, Intel has

introduced dedicated hardware for AES on its microprocessors. These are accessed by

dedicated AES instructions often called as AES NI. So, this AES designed consists of

standard cell design approaches standard cell techniques.

So, it is a very interesting a very nice piece of engineering work. The techniques that are

followed again are essentially  what  we have already been studying in  this  class like

composite fields, single map, reverse map. So, these are is exactly that what we have

studied. But, the engineering is so nice that it ends up in realizing a speed of 53 Gbps

obtained  by  a  fully  custom  design  flow  on  45  nanometer  technology.  So,  this  was

published in VTS 2010 so some of you were interested can go through these paper.



(Refer Slide Time: 31:59)

Here is a you know sort of a pictographic diagram about how the architecture looks like.

So,  if  you  see  now carefully,  the  ideas  are  essentially  what  we  have  already  being

studied. For example, the plain text is mapped to GF 2 power of 4 squared, and then the

operations are done in the composite in composite fields ok. So, there are all these S-

boxes which are placed over there.

And this is an and finally right, there are I mean depending upon the configurations there

are different iterations, which are set like there are either 5 iterations or 6 iterations or 7

iterations. And finally, you get back the result which is in the composite field. So, you do

an final mapping or the reverse mapping from GF 2 power of 4 square to GF 2 power of

8. So, therefore this mapping right like which is shown here by the shaded boxes are

done only once.  So,  you are not doing any intermediate  transformation.  So,  you are

representing the entire AES in composite field. And the you know as we have discussed

like the mix columns, the affine transformations for sub bytes all of them are transformed

into composite fields ok. So, the entire operation is done in composite field.

And that essentially gives an opportunity of a very high throughput AES implementation

ok, which can be realized in your inter in our Intel processes. And as we shall discuss

later on right this essentially also gives us lot of nice observe nice properties in the sense

like it not only reduces latency, but it also helps to be you to protect against several side



channels, in particular software side channels, like cache diving attacks which we will be

discussing in our future classes.

(Refer Slide Time: 33:29)

So, let me stop here. So, again this is my standard reference that I have followed for the

book, I mean follow for the car for the follow for the class.

(Refer Slide Time: 33:37)

And to conclude like we have been discussing about how we can express the entire AES

in composite fields. We have discussed about techniques using isomorphisms, which are

efficient for S-boxes. We have discussed about how we can combine officially the mix



column and the inverse mix column operations. We have discussed about how encryption

and decryption of AES can be made similar by using its structures. And finally, we have

discussed about how I mean we I mean the general observation is that when you are

combining encryption and decryption,  then it  says valuable  gates  ok.  So, with this  I

would like to stop here.

And thank you for your attention.


