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Lecture – 11
Field Isomorphisms (Contd.)

So, let us start on the next part of the talk. So, where we shall be discussing about again

not continuing about what we were talking in the last class on field isomorphisms. In

particular we shall be trying to see how we can construct these transformations in a more

algorithmic manner, ok. 

(Refer Slide Time: 00:33)

So, I shall be starting with you know like defining of course, like as we have seen an

isomorphism but also on a term which is called as composite fields, ok. So, and we shall

see how we can develop isomorphisms between the composite fields. And as I said like

how we can algorithmically construct these isomorphisms, ok. So, I shall state two broad

algorithms and the final algorithm is more efficient compared to the first one, ok. 
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So, therefore, what are composite fields? So, as we have seen fields of the or extension

fields of the type of GF to the power of n, we can also construct fields of the type of GF

of GF 2 to the power of n whole power of m. So, these kind of fields are called as

composite fields. 

So, if there exists irreducible polynomials say Q Y of degree n then I can use that Q Y

and construct a field GF 2 to the power of n from GF 2, and then I use a polynomial P X

of degree m, which are used to extend GF I mean GF 2 to the power of n to GF 2 to the

power of n whole power of m, ok. So, therefore, right fine I extend from GF 2 to GF 2 to

the power of n using Q Y and I extend GF 2 to the power of n to GF 2 to the power of n

whole power of m using P X.

So, now, the composite field which is denoted as GF 2 to the power of n whole power of

m, you can easily understand that if I consider another field say GF 2 to the power of k,

where k is equal to m into n that is the product of m and n then the number of elements in

GF 2 to the power of n whole power of m and GF 2 to the power of k are equal, are same

they  are  equinumerous,  ok.  So,  therefore,  right  if  I  can  establish  of  a  one  to  one

homomorphism between them then that qualifies as an isomorphism. So, I can establish

an isomorphism between these fields, I can establish an isomorphism between GF 2 to

the power k to GF 2 to the power of n whole power of m and also vice versa. So, I can



transform an event from this field to this field and also from this field back to GF 2 to the

power of k. 

So,  this  can actually  give rise or give opportunities  or for efficient  implementations,

where I have got an original field say GF 2 to the power of 8, say k is equal to 8. I

transform this into say n equal to 4 and m equal to 2, so I transform this into a field GF 2

to the power of 4 whole square and I do my computations in this field. So, as I will see or

we will  see in more details  in subsequent  classes that  means,  that I  can now do the

computations right or the fundamental computations in GF 2 to the power of 4 which is a

much more simple field compared to GF 2 to the power of 8. And once the result is done

in GF 2 to the power of 4 whole square I can get the result back to GF 2 to the power of

8 by using my reverse transformation. 

I can do further decompositions; that means, I can decompose GF 2 to the power of 4

further into GF 2 square and I can get a field which is like GF 2 to the power of 2 power

of 2 power of 2 which is also, would be isomorphic to GF 2 power of 8, ok. 
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So, how do we construct isomorphism between composite fields is what we shall study

in today’s class. So, if you remember like we discussed about primitive polynomials. So,

therefore, right these primitive polynomials will be used to construct say GF 2 to the

power of n which is denoted as say Q Y, ok.



So,  note  that  primitive  polynomials  are  also  irreducible  as  we  have  discussed.  So,

therefore, right we they are essentially can be used to extend the field GF 2 to GF 2

power of m. And suppose right omega is the root of this primitive polynomial. So, note

that if it is a root then it is also a primitive element. So, therefore, now the elements 0, 1,

omega, omega square to the power of omega 2 to the power 2 to the power of n minus 2

will therefore, give all my elements in GF 2 to the power of n, ok.

You can think of the example that I gave you for GF 2 to the power of 4, so that I had all

you know like 15 nonzero elements,  in a more general setting there will be 2 to the

power of n minus 1 nonzero elements and of course, you have 0. Likewise, you can also

use the primitive polynomial to construct GF 2 to the power n whole power of m and as I

said we denote it by P X, ok. So, let alpha be the root of this and now the elements will

be 0, 1, alpha, alpha square, so until alpha to the power 2 to the power of n m minus 1,

ok. 

So, now, I have got all the elements say in GF 2 to the power of n m and there are totally

2 to the power of m n elements in this in this field. So, now, the arithmetic I want to

define arithmetic in the field GF 2 to the power of k which is my original target field,

where k is  equal  to  m into n.  Now, this  can be performed by modulo the primitive

polynomial R z, ok.

So, what is R z? Now, R z is nothing but z to the power of k plus r k minus 1 z to the

power of k minus 1 plus 1, till 1, where each of this r i belongs to GF 2; that means, they

are either 0, 1 elements. So, again if gamma is a root gamma is a root of this polynomial

then elements can be expressed in the polynomial basis like 1 gamma, gamma square, so

on till  gamma to  the  power  of  k  minus 1,  in  like  as  we have  seen  in  the  previous

discussions. 
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So, how do I map GF 2 to the power of k to GF 2 power of n m where k is equal to m n?

A very simple method to do this conversion is to find the primitive element of both the

fields. So, GF 2 power of k and GF 2 to the power of n power whole power of m the

primitive elements are say gamma and alpha, which means like gamma is a primitive

element of this field and alpha is a primitive element of this field, ok.

So, now what I will do is that I will make a check if you remember the example that I

gave you exactly like that I will check that of course, like since gamma is a primitive

element it has to satisfy all of gamma equal to 0 because it is a root of the polynomial R

x, ok. And R of alpha that means, this element where I mean I am mapping gamma to

alpha, ok. So, therefore, this alpha should or if I if I plug in alpha to R but now I have to

do a modulo in the target field, ok. So in the, if you remember in the example it was, I

was doing modular F 2, ok. So, here we have to do modular of P X, Q Y because there

are  two  polynomials  on  which  you  have  two  function.  P  X  will  be  your  bigger

polynomial, because your essentially this will be of degree m and Q Y will be essentially

your degree n polynomial which is essentially for working on your base fields or on the

subfields, ok. 

So, therefore, right if this satisfies then you map gamma to alpha, and if the roots do not

satisfy the polynomial  we repeat the test  for the next  primitive element,  ok. So, you

repeat  it  for  the next  primitive  element.  So,  once you have  got  that  map you know



gamma and alpha  then  you can essentially  for  all  the  2 to  the power of  k  minus  2

elements which are essentially I mean for all the 2 to the power of k minus 1 nonzero

elements you can define mappings by just mapping gamma power of i to alpha power of

i, ok. So, then in that case you basically map all the elements, ok. 

(Refer Slide Time: 07:53)

So, therefore, the algorithm right for doing, we can actually state this in an algorithmic

fashion. So, the input is n and m, Q Y, P X and R z which are my polynomials and I want

to map GF 2 power of k to GF 2 power of n whole power of m, where k is equal to n into

m. So, we find out the primitive element of GF 2 power of k which is denoted as gamma

and for alpha equal to 1 to alpha 2 to the power 2 to the power of n m minus 1; that

means, for all the possible elements in GF 2 to the power m n, I have to calculate I have

to check this that is whether alpha is a primitive element in my target group and whether

it satisfies this equation that is R alpha mod of Q Y, P X is congruent to 0.

The moment I do I get such an element I can break and I essentially have got my alpha

and therefore, I can establish my mapping for all the 2 to the power of m n elements, ok.

Therefore, I can map I can calculate alpha power of i calculate gamma gamma power of

i. Note that in when I am doing calculation alpha power of i, I have to always do modulo

of Q Y, P X, and my b 1 essentially is gamma to the power of i mod R z. So, this has

been repeated twice but anyway you can just keep it once. So, basically gamma power of



i mod of R z and then I map a 1 to b 1, basically I map an element a 1 to b 1 and I get all

the possible mappings required. So, let us see an example for that.
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So, suppose I said I want to map GF 2 power of 4 to GF 2 square square, which is a

composite field and I said R Z as Z to the power of 4 plus Z plus 1 my Q Y is Y square

plus Y plus 1 and P X is X square plus X plus 2. Note that here this polynomial is an

irreducible polynomial for GF 2 square square, ok. So, the elements can be elements

from GF 2 square whereas, these elements are irreducible polynomials respectively for

GF 2 power of 4 and this is for GF 2 power of 2. So, the elements are in 0 and 1 in GF 2.

So, note that Q Y is used to construct GF 2 square while P X is used to extend to the field

GF 2 square square, ok. So, the first primitive element is say gamma which, I mean I

mean gamma which belongs to GF 2 power of 4 is 2, that is you can also represent it by

the polynomial x, because this has got what a minority presentation which is 1 0 and

therefore, that stands for x. 

Now, it can be checked that 2 can be used to generate all the nonzero elements of GF 2

power of 4, so it is a primitive element. Likewise, the first primitive element of GF 2

power of square square such that this condition that we were checking that is R z is

congruent  to  0  mod  of  Q Y, P X  is  true  is  actually  4,  ok.  So,  4  would  mean  that

essentially it is 0 1 0 0.



Note that this is an element of GF 2 square square. So, therefore, if I have got an element

0 1 0 0, then that would stand as I mean essentially it means that the first part is 1, and

the second part is 0 0, ok. So, there are two parts in the i expansion, ok. So, therefore,

right if this is true then I will map 2 to 4, and 0 will get mapped into 0, so all the other

elements I will get mapped into say 2 square to 4 square 2 cube to cube and so on, ok.

So, in more details, this is a proof that 4 indeed belongs to GF 2 I mean which belongs to

GF 2 square; this will be like GF 2 square square, ok; so GF 2 square square is actually

indeed the correct choice. 
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So, note that 4 is 0 1 0 0 and therefore, this is nothing this 0 1 is X, and this is 0 0, ok.

So, note that this is not an element in GF 2 power of 4. If this was an element in GF 2

power of 4 then this would have been X square, I would have represented as X square,

but this is an element of GF 2 square whole square, I missed out this 2 2, here it  is

actually GF 2 square whole square. So that means, right in GF 2 square whole square let

me try to write here.

So, essentially that means, that if I have got you know like an element say GF 2 square

whole square, ok. So, it means that the polynomial or the representation is as follows, so

that  means,  like there are two parts  of this  decomposition the first  part  is  say a,  the

second part is also b, is b. And therefore, the element is actually ax plus b, where a and b

both belongs to GF 2 square, ok so that means, right if I have got and I mean a as 0 1, ok.



So, if I have got a as 1 and b as 0, which are elements in GF 2 square. Then this is what?

This is nothing but X, and that is what we have denoted here as X, ok. So, likewise right,

so now, with this with this you know like background you can verify that whether the

condition that we had (Refer Time: 13:19) is getting satisfied. So, I calculate R X and

therefore, R X is nothing but X power of 4 plus X plus 1, ok. And we know that; so now,

interesting is that how we do the mod of Q Y P X, ok. So, you note that I have got X to

the power of 4 plus X plus 1, and X to the power of 4 plus X plus 1 needs to be reduced.

So, therefore, I use first my polynomial which is P X, ok. 

So, in P X my polynomial was X square equal to X plus 2 or X square plus X plus 2. So,

if I set that to 0, I have got X square equal to X plus 2. So, 2 is an element of GF 2

square. So, therefore, X cube is equal to if I just you know like cube this, ok. So, I mean

I  mean  if  I  just  multiply  this  with  X  then  I  will  get  and  if  I  do  again  at  some

simplifications.  So, note that the moment if I multiply this X square with X, ok. So,

suppose I have got X square X square equal to X plus 2, and if I multiply this by X then I

will get X squared plus 2 X, ok. But note that in this polynomial or in this representation

because I am talking about GF 2 square whole square X square is nothing but X plus 2.

So, therefore, I will replace this with X plus 2, plus 2 X. 

So,  therefore,  right  if  I  want  to  calculate  this  or  simplify  this  further  I  can  take  X

common and then I add 1 plus 2 that is 1 gets added with 2 plus 2, ok. Now, note this

math is essentially again done in GF 2 square. So, if I want to do 1 plus 2; that means, it

is nothing but 0 1 X odd with 1 0, and therefore, I get 1 1 here, and this 1 1 is nothing but

3 and that is why I have got here 3 X, and this two will come here. So, I get 3 X plus 2,

right.

So, likewise right I calculate X power of 4 which is 3 X square plus 2 X make some

simplifications I get X plus 1, ok. So, therefore, right now you can observe that if I get,

so therefore, X square is equal to X plus 1, and this implies that R 4, if I get R 4 and you

know like R 4 will be equal to 0 mod P X Q Y because now I have to bring in Q Y into

play, and you know and therefore, right I get this as 0, ok. So, therefore, right I mean I

mean I get X plus 1 here which is my X power of 4, so if I substitute X plus 1 here then I

get X plus 1 plus X plus 1 which is equal to 0, ok. So, therefore, R 4 is indeed equal to 0

mod P X, Q Y and therefore, right my condition is satisfied, ok.



So, therefore, keep in mind that when you are doing computations like 3 into 2 in GF 2

square then you have to express 3 as Y plus 1, and 2 as Y and therefore, when you are

doing computations of say 3 Y plus 1 into Y, then you will have Y that that has Y square

plus Y and Y square plus Y is nothing but 1 because now your polynomial is Q Y. So,

therefore, when you are doing the final step here, ok. So, therefore, this 3 I multiplied

with 2 and I you know like wrote 1 over there because 3 into 2 in GF 2 square with this

irreducible  polynomial  is  1,  ok.  So,  this  math  you have  to  do little  bit  in  a  careful

manner, but if we do that then we should be able to easily verify that this equation this is

indeed satisfied, ok. 

So, with this you know like; so therefore, right I mean let us try to goead and try to see.

So, there were now once you have you know like got these this checked out you know

that 2 gets mapped into 4 you can take the power of 2 and power of 4 and again do you

know like similar computations, and you can develop a mapping for all the 15 nonzero

elements and I map 0 to 0, ok. So, this is one way in which I can algorithmically develop

an isomorphism between these composite fields, ok.

But at the same time, you can easily understand that for this particular construction I was

doing an exhaustive analysis, I was doing an analysis. So, if you remember the you know

like the for loop counts then you will see that the for loop essentially you know like goes

for all possible things that, it goes for all 2 to the power of mn values, and this is not very

efficient  when you are  trying  to  do  it  for  larger  fields,  ok.  So,  there  is  an  efficient

algorithm for handling this. So, let me talk about that subsequently.
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So, here I want to present an efficient algorithm between binary and composite fields, I

want to map GF 2 power of k again to GF 2 power of m n where k is equal to m n and I

want to you know like develop 0 1 matrix. So, this is the k cross k matrix which means

that I can take any GF 2 to the power of k element multiplied with this matrix and I

should get back my resultant output, ok. So, again let me try to explain this which means

that suppose now I have got t, so this T matrix is now a k cross k matrix. So, this is what

I want to construct out of the algorithm, ok. 

And I take an element in GF 2 to the power of k and as you know that any GF 2 to the

power of k element can be expressed as a vector of dimension k, ok. So, I can express

that a k cross 1 vector. So, now, if I multiply this T matrix with this element in say GF 2

power of k right, I get another k dimensional result, but this k dimensional result now

should belong to GF 2 power of n whole power of m, ok. So, that is the overall objective.

So, I want to basically construct this matrix, ok. So, this matrix I mean I mean you know

like I will say I will try it of course, like if I can develop this matrix then and if this

matrix  inverse  also  exist  then  the  inverse  of  this  matrix  will  give  me  the  reverse

transformation, from GF 2 power of n power of m to GF 2 power of k. 

So, the interesting thing is that rather than 2 to the power of k which I was doing in the

previous algorithm this mapping I can do, I can develop by only mapping k elements

which are the basis vectors. I will just map only the basis vectors and that should be



sufficient, ok. So, therefore, right I mean let us see about how we can do that and you

know like we should be able to do that in a much more efficient manner. 
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So, what I do here is that I essentially look at my polynomial basis for GF 2 to the power

k which is denoted as 1, gamma, gamma square till gamma to the power of m minus 1,

where gamma is a primitive element of GF 2 power of k, ok. So, therefore, right I mean

now and I and I find out the unity in both the and I for the first thing which I do is that I

map the unity of the both the fields. I map the one in the in the field GF 2 to the power k

to GF 2 to the power n whole power of m. Now, the one in both the fields is denoted by

the polynomial 1, ok. 

So, therefore, right the first we first map the unity element in GF 2 to the power k to the

unity element in GF 2 to the power of n whole power of m, and essentially right I mean

that means, that I have got one column of my matrix decided, ok. So, I will clarify that.

So, then what I do is that I find out the primitive element in GF 2 to the power k, the

primitive  element  which  may  essentially  as  we  have  discussed  in  your  previous

discussions. So, I get say that element is denoted as say gamma. So, now, gamma is

mapped into alpha power of t, and alpha and which is essentially the base element, ok.

So, now, what I do is that I map I map gamma to alpha power of t, and then I mapped

gamma square to alpha power of 2 t and likewise I continue this and I map gamma power

of i to alpha power of it, ok. That means, I do this for all k values from 0 to k minus 1 I



do it only for k values, ok. And if I have done that then my entire mapping is decided, ok.

So, therefore, if I plug in I equal to 0 that stands for 1. So, I have already mapped 1 into 1

and I start mapping you know like gamma power of 1; that means, gamma to alpha

power of i, and I mean alpha power of t and then I mapped gamma square t alpha power

of 2 t and likewise gamma to the power of k minus 1 to alpha to the power of k minus 1,

ok. If I have done that then I have mapped all my basis vectors. So, these are my basis

vectors, ok. So, maybe you should make a correction here this m will be k, ok.

So, I mapped because in GF 2 to the power k there are k basis vectors, ok, there is this m

is a wrong yeah wrong thing. So, maybe we should correct it. So, I mapped all the k

elements here by this transformation. 
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So, now I want to check for t because you can easily understand that this choice of t is

crucial,  because  this  choice  of  t  will  essentially  indicate  whether  the  isomorphism

property is satisfied. So, again I apply the same trick what I have discussed previously I i

calculate R alpha power of t. So, remember that R is my target irreducible polynomial;

that means, the irreducible polynomial of my field of my target group, ok. So, therefore,

what I do is I mean essentially the; so R is the irreducible polynomial of the field GF 2

power of k. So, there I plug in alpha power of t. This should not be 0, but if I do mod of

Q Y P X then I should get 0, exactly in the same way as we have discussed previously. 



So, now, there will be exactly k primitive elements which will satisfy this condition. So,

this is an important criteria to help us prune and get the choice of t, ok. So, namely you

see that if alpha power of t will satisfy this equation then alpha power of t whole power

of 2 j, 2 to the power of j will also satisfy this equation where j can go from 1 to k minus

1, ok. So, therefore, note that of course, the exponents are computed modulo 2 to the

power of k minus 1, ok.

So, why does this result follow? These results follow from this simple observation that if

R X is congruent to 0 modulo 0, I mean its congruent to 0 then in this field because it is a

characteristic to field R X square is also equal to 0, ok. And likewise, R X to the power

of any 2 to the power of j is also equal to 0, ok; that means, for all these k minus 1 values

immediately they will also become equal to 0 and if it is not equal to 0 then also these are

not equal to 0, ok. And therefore, right we can actually do this that we can we can easily

you know like just check this condition, if this condition is not satisfied because if this

condition is satisfied then we are done we have got a value of t. But if this is not satisfied

then we can immediately rule out some possible t choices, we can actually rule out all

these k minus 1 t choices and actually with this all k, we can eliminate t, k t choices at

once, ok. 

(Refer Slide Time: 24:51)

So, in order to do that we actually maintain a data structure which is denoted as an array

S, ok; so, this array S essentially stores all the possible values of t, ok. So, there are 2 to



the power of k minus 1 possible values of t. So, I indicate this by an array or with 2 to the

power of k minus 1 addresses and 1 bit of information. So, I initialize then this k cross k

matrix t which I want to build up with each column indicated by T i. So, there are k such

columns, ok. 

Note that interestingly the first column actually is already at least one of the columns is

already decided. So, this  is what I want to essentially  find out. So, note that the kth

column essentially  means 0 followed by 1 is  already decided because I  know that 1

should get mapped into 1, ok. So, if I have an element say 1 here that should get map

into  1,  ok.  So,  therefore,  I  should  get  the  result  also  as  1,  ok.  So,  therefore,  this

essentially means that this column is already known. What we need is the remaining k

minus 1 columns, ok. So, in order to know that what we do is a very simple evaluation

now is we basically you know like choose t; that means, we initially started with t equal

to 1 and we just you know like and we start with the primitive element in GF 2 to the

power of n whole power of m, ok.

So, note that although I have not told in details but there are quite efficient primitive

element or primitivity tests which are available, ok. So, we can apply one of them and

from there I can you know like verify that whether alpha is a primitive element or not.

You  need  not  you  know  like  generate  alpha  and  then  check  you  can  do  it  more

efficiently, ok. So, therefore, what I do is now I essentially calculate R alpha power of t

and if this is equal to 0 then we are done. So, you can break this while loop, if not then

essentially you immediately you can strike out some possible values of S, I mean for

some possible values of i by indicated that in indicating that in the S array as 0, ok. 

So, now, when you go into the next parts inside the while loop you just check whether S t

is equal to 0 or not because if S t is equal to 0 then; that means, it has been indicated as

not a candidate by a previous run or you check the gcd of t and 2 to the power of k minus

1. Now, you can easily verify that if the gcd of t and 2 to the power of k minus 1 is non-

trivial and greater than 1 then t is not a candidate, because t is not in that case essentially

that violates its primitivity requirement, ok. And therefore, right you can also you can

increment t in that case, ok.

So, therefore, once you have you have passed through this you should get a value of t

and once we have got a value of t then what you just do is that for the remaining columns



you just write the binary encoding for alpha power of ts, that is alpha power of 2 t, alpha

power of 3 t and so on till alpha to the power of k minus 1 t you just find them and you

just write the binary expansion of that, and that will give you this entire matrix, ok. 
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So, let me stop here. So, essentially you know like the reference that I have followed is

essentially this text, and you should be able to you know like you get more details in the

in the book, and I am not really you know like going into all the details but I am trying to

give you the major pointers, ok. So, hopefully right I mean you should be able to follow

the remaining things from the book.
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So, come to conclude. What we discussed in the todays class and also in the last class

was we were trying to define field isomorphisms. We tried to develop an understanding

on this equivalent fields which are called as composite fields, and we also try to discuss

conversion algorithms between the fields, ok like we try to find out efficient mappings

between GF 2 to the power k, and GF 2 to the power of n power of m. And we shall see

you know like in the subsequent classes how we can use this ideas to develop efficient

architectures, ok. 

Thank you.


