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So, welcome to this class on Hardware Security, today we shall be discussing on the

topic which is called as Field Isomorphisms, which is a very important mathematical tool

to  develop  efficient  architectures  for  finite  fields  which  we  can  apply  for  realizing

efficient architectures for a subsequently for AES kind of ciphers. 

(Refer Slide Time: 00:35)

So, the concepts that I shall be trying to covered in today’s class or I shall be starting to

cover in today’s class is we shall take a recap on groups rings and fields, we shall be

discussing about binary finite fields we shall be discussing about the concept which is

called as primitive elements. And then define what are called as basis of fields and then

finally  discuss  about  Isomorphisms  and  composite  fields  and  try  to  construct

Isomorphisms. 
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So, to start with here is a quick recap on what are called as mathematical groups. So, as

we know that mathematical groups are defined by an operator or a binary operator say it

denoted it as dot, such that if I take any two ordered pairs a and b which belongs to G

then the following axioms holds. 

The first is closure that means, if I take two elements a and b in G apply the operator

than the result is also in the group in associative, which means I can do either a dot b dot

c there I can do either b dot c first or if I do a dot b first the results are same ok, so that is

you can do it in anyway. The 2nd the 3rd properties identity element which means that

there must be a unique element e which belongs also to the group, such that if I take a

which is an another element in the group and then I apply the identity element either on

the right or on the left I still get back the original element which is a.

That means a dot e is equal to e dot a which is equal to a for all a which belongs to G.

Likewise you also need to have an inverse element which means that for any element a

with belongs to G there must be an element a dash which also belongs to G, such that a

dot a dash is equal to a dash dot a which is equal to the identity element. If the group also

satisfies commutativity which means that I can do a dot b or b dot a for all a b which

belongs to G then it is called as a commutative group or often called as a Abelian group. 
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So, you can extend a group to agreeing by bringing another operator along with the so

now you have got 2 operators say plus and dot often the 1st plus is called as the addition,

where the 2nd one is called thought to be like something like a multiplication or product.

So, such that the so again you know like few axioms has to have to hold.

For example for all a b c now which belongs to R that is the ring the following properties

hold the first is that R has to be an Abelian group under addition. Then with respect to

multiplication  or  the  dot  operator  the closure property of  R has  to  be satisfied.  The

associativity  property  of  R  is  also  satisfied  under  multiplication,  there  exist  a

multiplicative identity element denoted by 1 such that for all a which belongs to R, again

I can do a dot 1 or 1 dot a I get back again I get back a. There is another law which also

needs to be satisfied which is called as a distributive law, which means like now if I have

got three elements which belongs to R then a dot b plus c essential is equal to a dot b

plus a dot c which means multiplication distributes over addition.

Likewise you can also do a plus b dot c and you will have a dot c plus b dot c. So,

therefore, you know in the several examples of rings for example, the set of integers real

numbers, rational numbers, complex numbers are all examples of rings. So, ring is also

again you know like a similar way like in the groups you said to be commutative, if the

commutative property under multiplication holds; that means, for all a b which belongs



to R we have got a dot b is equal to b dot a. So therefore, it is called it is a is an example

of a commutative ring.
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Then we have got something which is called as field, so a field is denoted as F plus dot

again you have got 2 operators and it so it is called a field. So, we extend the concept of

groups to rings and then rings to fields. So, what is a field? So, field is a commutative

ring with satisfies the following conditions. So, it of course, satisfies the properties of

what are called as commutative ring as we have seen in the previous slide, but we extend

it  with some more some more conditions.  For example,  if  you remember in the last

definition we did not say that every element must have a multiplicative inverse.

So, now we bringing that notion where we say that for all elements a which belongs to F

except 0; that means, for all non 0 elements of a of F there exist a unique element a

inverse such that a into a inverse is equal to a inverse into a is equal to the multiplicative

identity or 1. Now, the multiplicative inverse is denoted as a to the power minus 1, so

essentially it says that all non 0 elements have multiplicative inverses. And it also has got

no 0 devices, which means that if I have got elements a and b which belongs to F and if I

have got the result a dot b equal to 0. Then either a is equal to 0 or b equal to 0; which

means  that  2  non zero elements  in  the  field should not  multiply  to  get  0  this  is  an

important condition for it to be a field. 



So,  the  set  of  rational  numbers  real  numbers  and  complex  numbers  you  can  easily

understand are now not examples of I mean not examples of fields, but the set of integers

is not an example of field why? Because, multiplicative inverse property with now not

hold you can easily see that suppose 5 is an integer and if I say like 1 by 5 is an is an

inverse of it, for example but 1 by 5 is not an integer ok. So, therefore, it does not have

any multiplicative inverse in the set of integers. There is another very important notion

which we already  have  kind of  discussed in  the previous  classes  which is  called  as

characteristic of a field.

Now, what is the characteristic? Now, it is a minimum value of the integer k, such that if

I take an element a for example and I have a add a say k times I get k dot a which is

equal to 0. So therefore, it is a minimum number of times I add an element a in the field

to get 0 is called as the characteristic of the field. Now, you can easily understand there if

it is a field and if a is a non zero element the a inverse also exists. And therefore you can

also synonymously say that it is the minimum number of times I add one to get 0, that

means k into 1 is equal to 0. So, there 1 is of course the multiplicative identity of the

field F.
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So, we have seen several examples of characteristic 3 fields characteristic 2 fields. So, in

particular as we have discussed previously characteristic 2 fields are efficient, because of

the  you  know lye  a  fact  that  it  gives  rise  to  you  know  like  compact  and  efficient



architectures. So, in GF 2 which is essentially the smallest field in the you know like in 0

1 domain the elements are only 0 and 1. So, we have got either 0 and 1 as elements in

this field and it actually gives rise to very compact systems because, you know most

computing  systems are built  on binary number systems.  So, it  is  very suited for our

computing platforms.

In particular you can you know think about that a single bit can be used to represent an

element in GF 2 and for example if you compare it with GF 3 you will see that GF 3 you

will have elements 0 1 and 2, but is you can easily think of that for to realize these three

elements  you need 2  bits.  So  therefore,  you are  basically  having  provision  for  four

elements but you are only using three elements. On the other hand write the utilization in

GF 2 is very compact because, you have got a single bit to represent an element in GF 2

and you know that you can have two elements represented in GF 2 and you have exactly

two elements in GF 2.

So therefore, you are not wasting any storage or wasting any space. So therefore, right

GF 2 seems to be very efficient and indeed as we have discussed previously as well that

their the operations. For example the addition is very easy in GF 2 there was no carry ok.

So, the addition in GF 2 can be realize by only XOR or exclusive or and also like you

can also extend GF 2 to something which is called as an extension field which is denoted

as GF 2 power of m, which also leads to efficient arithmetic operations like as we have

seen square  rings  and inverters  and multiplications  which  we have  pretty  efficiently

implemented. 
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So therefore, this brings us to this concept of binary finite fields. So, a binary finite field

can be represented as a polynomial a x, where I have got say you know like the degree as

x power of m the degree is m till say a constant term a 0, such that all the coefficients

here are belonging to GF 2 which means they are either 0 or they are either 1. So, further

more this polynomial is said to be irreducible over GF 2, if a x is divisible by c or by c

dot a x. That means, so where c is of course, like a constant which belongs to GF 2 so

that means, you do not have any non trivial factors of the polynomial which belongs to

this field. 

So, an irreducible polynomial of degree m with coefficient in GF 2, so now if you have

got  such an irreducible  suppose this  polynomial  is  irreducible  which means like you

cannot have such kind of trivial factors. So, you I mean you cannot have trivial factors

for this polynomial a x, so then it qualifies as an irreducible polynomial. So, what do we

do is you take the ring of polynomials, that means all polynomials possible in GF 2 x that

means, all essentially it simply put it just means that I will take all possible polynomials

whose coefficients are in GF 2 and then I will divide it or rather I will take the remainder

after I divide that polynomial with this irreducible polynomial. 

So, you can easily understand that if the degree of this polynomial is m then the degree

of the remainder will be maximum m minus 1. So, therefore, write any reminder with

that  I  get  or  any  modular  that  I  get  any  modular  polynomial  that  I  get  have  got  a



maximum degree of m minus 1. So therefore, the number of elements which I need to

represent that module e is ranging from 0 to m minus 1. So, there are m bits and you

essentially have got 2 to the power of m such possibilities, so that means like you can

represent all elements in GF 2 to the power of m using that representation.

So, essentially this is an this is this particular extension is what is called as an extension

field or any means of the extension field therefore can be represented by a polynomial of

degree m minus 1 over GF 2 and this way we construct the extension field GF 2 to the

power of m. 
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So, now let us see an example so in particular I shall be constructing this field GF 2 to

the power of 4 which is an extension of GF 2. So, the irreducible polynomial that I used

for this purpose is x to the power of 4 plus x plus 1, note that there can be more than 1

irreducible polynomial and I just choose one of them. 

So, I choose some element which is called as a generator x which is also you know like

you can think of the definition of a generator by being an element in the field, which if

you raise to it is powers it can actually generate all the non 0 elements in the field ok. So,

note that  it  is  not  you cannot  generate  0 out  of  this  you can generate  all  the non 0

elements from x. 



So, what I do is I calculate x x power of 1 x power of 2 x power of 3 and so on till x

power of 15 to get back 1. So, after x power of fifteen I will again get x and the process

and there pattern will repeat. So, basically what I have done is that in GF 2 to the power

of 4 there are 15 nonzero elements there is one which element which is 0, but all this 15

nonzero elements can be now generated by only x and by reducing it by x power of 4

plus x plus one whenever the degree exceeds 4.

So, let us see the process suppose I start with x I then calculate x squared then I calculate

x cube and then when I calculate x power of 4 as I said as I have to reduce this. So, how

do I reduce it I substitute this x power of 4 plus x plus 1 as 0 which means x power of 4

is equivalent to x plus 1. So therefore, I replace x power of 4 by x plus 1, then I again

multiply this with x square get x squared plus x and then I get x cube plus x squared then

I get x power of 4 plus x squared x power of 4 is again replaced by x plus 1, so I get x

squared plus x plus 1. And if I repeat this process in this fashion you will see that finally

the 15 position I will get x to the power of 4 plus x which is nothing but 1. So therefore,

write I will the process will repeat after this and again I will have x x squared x cube and

so on ok.

So, therefore, I this x or this polynomial x serves as a generator and as we, we shall see

subsequently this is also called as a primitive element in this field. 
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So, that essentially brings us to the primitive element of the field, so in general if in a

more general setting if you considered the field GF 2 to the power of n there is a element

alpha,  such that  for  every  nonzero  element  such that  every  nonzero  element  can  be

written  in  the  form of  alpha  power  of  k  this  element  is  called  the  generator  or  the

primitive element on the group.

Now, there is a concept of a special class of polynomial which is called as the primitive

polynomial.  So,  what  is  a  primitive  polynomial  a  primitive  polynomial  is  a  monic

polynomial  of  minimum  degree  such  that  the  primitive  element  is  a  root  of  the

polynomial,  this  primitive  element  that  we have been talking about  is  a  root  of this

polynomial.  So,  it  is  the  minimum  degree  polynomial  or  minimum  degree  monic

polynomial where the primitive element is a root, interestingly a primitive element is

always irreducible but not vice versa. 

Over GF 2 to the power of n there are phi 2 to the power of n minus 1 by n where phi is

the Euler Totient function number of primitive polynomials possible. So, there are more

than one primitive polynomials possible whose a essentially, which means that if I take

this polynomials and I equate to 0 then I will get elements which belong to the extension

field and I roots of this polynomials. So, those elements which are roots are those roots

essentially are primitive elements of this field ok.
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So, with this background right we essentially can start to look into the fields in much

more you know like in much more details. So, how to explain how do we express the

elements in the in the field, there are two important ways or two important ways in which

you can do that actually; one is what is called as polynomial bases and the other one is

what are called as normal bases.

So, in polynomial bases you again start with an irreducible polynomial again as we have

been discussing that if I want to extend GF 2 to GF 2 power of n, then I have to use an

irreducible polynomial. So, I suppose you know like px is an irreducible polynomial and

let alpha be the root of px ok. So, in particular write what I will do is that I will then

generate or rather I will write my polynomial base as 1 alpha alpha square so on alpha to

the  power  of  n  minus  1.  So,  this  becomes  the  you  know  like  what  is  called  as  a

polynomial  bases,  which  means  I  can  express  any element  in  this  field  using  linear

combinations of these components.

Likewise there is also normal bases which is essentially again starting from p x which is

an irreducible polynomial over GF 2 to the power of m and let again alpha be the root of

px then the set alpha alpha square alpha to the power of 2 to the power of 2. Likewise

alpha to the power of 2 to the power of m minus one again you will see that you have the

same number of elements in the bases ok. So, these particular this sequence is what is

called as a normal bases if this m elements are linearly independent. So, if this there is a

important criteria where the m elements have to be linearly independent.

So, again you can express any element in the field also by linear combinations of this

with  these  bases  ok.  So,  the  important  ramifications  between  them  you  know  like

between  the  polynomial  bases  which  probably  it  is  more  simple  to  explain  and the

normal bases, through which you can actually have very interesting constructions very

efficient constructions. 
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So, both are useful but let us try to look into the polynomial representation. So, in the

polynomial  representation  any element  in  the field  can  be expressed in  terms of  his

bases, the bases is as I said in the previous slide where I have got 1 alpha till alpha to the

power of n minus 1.

So, if I want to you know like express say any elements say GF 2 to the power m. So,

this should be GF 2 2 to the power of m an element can be expressed with respect to it is

polynomial  bases  as  a  alpha.  So,  you  can  see  that  I  am  now  having  a  general

representation which is ax, but I have now taken a specific instance of that ok. So, how I

am generating this element I am taking linear combinations of my bases elements. So,

the coefficients of my linear expansion essentially are denoted as a 0 a 1 so until a minus

1 and these elements can be either in there in GF 2, that means they can be either 0 or

they can be either 1. 

So therefore, you can easily understand that this particular representation essentially can

covered all the a I mean can covered the entire field GF 2 to the power of m. So, it can

very  much  represent  any  element  in  GF 2  to  the  power  of  m and  that  is  why this

particular or this particular choices are essentially gives you the bases. Note that you

cannot express you know like alpha power of m minus 1 by the other components ok,

that that means these are the minimum number of elements we are required to express all

elements in the field in the field. 
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So, now we are in a position to understand this concept of Isomorphisms ok. So, what is

Isomorphisms? So, suppose you have got 2 groups G 1 and G 2 and I want to define a

Surjective  function G1 to G2, that  means from G1 to G2 such that  in the following

condition holds. So, what is the condition? So, I have got an operator here so suppose

this operator is denoted as circle ok. So that means, I will do circle operation between

elements in the group G 1 and I do an operation which is define by a dagger symbol on

the on the group G 2. So therefore, right if I want to do an operation between x and y and

calculate x circle y I can also do this alternatively by mapping both x and y to this target

group G 2 by applying the mapping f for example. 

So therefore, now I get f x and I get f y and then I apply the dagger operation will f x and

f y, so I get f x dagger f y. So therefore, here we have we were like we took x we took y

we applied the operator circle and got x circle y. So now, if I apply the function f to the

result I get f x dagger f y and it turns out that f x dagger fy should be same as calculating

f x of I mean f x dagger f y should be the same as f applied on x circle y. So, then this

particular function is said to be a homomorphism ok. So, it is said to be homomorphism

if and only if f x circle y is equal to f x dagger f y. 

Note that the operators on the left and the right need not be the same they can be same

they may not be same. So, when I further qualify this mapping as an injective function

that means it is an one to one function. So, it is a one to one homomorphism then this is



what is called as isomorphism. Now, the idea of the isomorphism can be extended from

groups to rings and fields, in this extension the only difference is that we have got further

2 operations rather than 1 operation. 

So therefore, write they have got suppose you have operators are last end out then we say

that the mapping from R1 to R2 is a field isomorphism if and only if f of a plus b is equal

to f of a plus f of b and f of a dot b is equal to f of a dot f of b ok. So, I have just assume

that the operators are same on both sides, but you can also generalized that. So therefore,

this happens for every a and b which belongs to R1. 
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So, this essentially write essentially gives as the definition of isomorphism, so let us try

to see whether we can understand isomorphism in more details by take me an example.

So,  again  I  will  take  up  my example  of  GF 2  to  the  power  of  4  and  again  I  will

represented all the elements in GF 2 to the power of 4. So, note that now I have got also

0 which is over there, so I have got all the 16 elements. So, there is one which is 0 and

then there are 15 non 0 elements in the field. 

So, now as I said that there are 3 irreducible polynomials of degree 4 which can be which

can be used to construct this above field elements. The 1st one as we have seen is z to the

power of 4 plus z plus 1 you also have got another candidate f 2 z which is z to the power

of 4 plus z cube plus 1 and then there is a 3rd one which is called as f 3 z which is

actually  a  pentanomial.  So,  these  are  examples  of  trinomials,  but  now we have  got



another polynomial which is a pentanomial which is z to the power of 4 plus z cube plus

z square plus z plus 1, which is also an example of an irreducible polynomial for GF 2 to

the power of 4. 

So therefore, what I do is I extend using f 1 z the field is what I called as say capital F 1,

I extend again GF 2 to GF 2 to the power of 4 by using f 2 z and that field I called as

capital fF2 likewise I have got capital F3. So, now or you can easily understand that all

the  resulting  fields  will  have  sixteen  elements  interestingly  the  operations  will  be

different. For example, like if I want to do say z into z cube in the 1st field I will get z to

the power of 4 will result which is equal to z plus 1, in the 2nd field however that result

will be z cube plus 1 and in the 3rd field it will be z cube plus z square plus z plus 1. So,

you see I am doing the same operation but I am getting different results ok, because the

fields are equivalent but the they are not equal. 
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So, now I can actually you know like establish isomorphism between these fields I can

say that you know like all these fields are actually equal, but they I mean an equivalent

but  they  there  we  can  actually  you  know  the  establish  some  kind  of  relationships

between them. So, the fields are isomorphism are isomorphic and can establish and we

can establish a mapping between say F1 and F2 and I will try to show you that how we

can establish this mapping. 



So, first I do is what I do is this I start computing an element c which belongs to F 2,

such  that  if  I  take  the  you  know  like  the  irreducible  polynomial  F1  which  is  the

irreducible polynomial of the first field and then substitute c in that ok. Then you can

easily understand that what I will try to do is that I will try to calculate this modulo of F2

and if I calculate modulo F2 and then I get 0 then what I will say is that my z is mapped

into c ok. So, what is z you can easily understand z will satisfy F1 in the 1st field but not

c.

So, what I am trying to do now is that because c is an element in F2. So, if they are

equivalent then c should satisfy F1 but modulo of F2 and this street will work. So, let us

see  so  how  we  can  you  know  like  develop  1  mapping  using  this  observation.  For

example, suppose I take c is equal to z square plus z ok, so to verify what I do is that I

calculate f 1 z square plus z. 

So, F1 z square plus z is so if we remember what is F1 is z to the power of 4 plus z plus 1

ok. So therefore, write if I substitute z as by z square plus z, so I get the result as z square

plus z whole to the power of 4 plus z square plus z plus 1 and that if we expand I will get

z to the power of 8 plus z to the power of 4 remember that 2 is 0 in this field Plus z

square plus z plus 1 module of F2 and what is F2 F2 is z to the power of 4 plus z cube

plus 1. So, I can substitute z to the power of 4 by z cube plus 1. 

So, therefore, z to the power of 4 is z cube plus 1 and likewise z to the power of 5 is z to

the power of 4 plus z, if I replace z to the power of 4 with z cube plus z cube plus 1 then

I get z cube plus z plus 1. And likewise z to the power of 6 is again if I multiply this by z

I get z to the power of 4 plus z square plus z and again I will replace z to the power of 4 I

will get therefore z cube plus z square plus z plus 1. So, note that z again I can get z to

the power of 8 by directly squaring this, so I get that as equal to z to the power of 6 plus

1 and I replace z to the power of 6 by this expansion, so I get z cube plus z square plus z. 

So, then f one c module of f 2 is nothing but as we have seen z to the power of 8 plus z to

the power of 4 plus z square plus z plus 1 and that but that is that becomes equal to 0 ok.

So, you can easily see this that if I you know like combine z cube plus z square plus z

with z to the power of 4 which is z cube plus 1 ok, then I will get an add z with it an add

1 with it an add z square with it then the elements will get cancelled and I will get 0

module of F2. 
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So, let us take on the homomorphism property ok, so in homomorphism property you

consider 2 elements e 1 and e 2. So, suppose e 1 is equal to z square plus z and e 2 is

equal to z cube plus z ok, so these are 2 elements in F1. So therefore, if I want to trying

you know do the  product  in the  field F1 that  is  symbol I  will  take z  square plus  z

multiplied with z cube plus z, so I will get z power of 5 plus z power of 4 plus z power of

3 plus z square. 

So, in the field F1 I know z to the power of 4 is z plus 1 as z to the power of 5 is z square

plus z. So, if I substitute this then the product right becomes z square plus z plus z plus z

cube plus z plus 1 plus z square and that becomes equal to z cube plus 1. So, I get the

result as z cube plus 1, so now let us see the you know like if I apply the homomorphism

property I will get the same result. 

Now, the same operation can also be performed in the field F2 what I do is I apply

therefore, this napping on e 1. So, what is the mapping I will replace z by z square plus z.

So, what is e 1 z square plus z so therefore, I will replace this z by z square plus z. 

So, I get z square plus z whole square plus z square plus z and then I do a mod of z to the

power of 4 plus z cube plus 1 because, that is my field I mean polynomial in F2. So

therefore, if you expand this you will get z to the power of 4 plus z square plus z square

plus z which is and then I do a module of this I will get z cube plus z plus 1. Likewise I

do t e 2 which is again you know this element, so now again I replace z by z square plus



z I do a similar manipulation and I get z plus 1. So, now if I take these two elements then

they are elements in F2 now because I have mapped them to F2.
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I apply multiplication (Refer Time: 29:28) so I take z plus one multiplied with z cube

plus z plus 1 do a mod of z to the power of 4 plus z cube plus 1 and this result is equal to

z  square.  So,  let  us  check this  result  whether  in  indeed satisfies  the homomorphism

requirements. So, if you remember like what we have got in the previous computation

was we got the result essentially in the field F1 and the question is write we would like to

see there when we you know like. So, the field the result in field F1 was z cube plus 1

and if we transform this result into the field F2, I should get the same result as that I get

when I multiply the elements T1 and T2 ok.

So, in T 1 and T 2 I get the result is essentially z square. So therefore, now if I map z

cube plus 1 I should get z square so let us verify that. So, if I want to map z cube plus 1

therefore, my processes I will again replace z by z square plus z. So, I will calculate z

square plus z whole cube plus 1 and therefore if I expand this I will get z to the power of

6 plus z to the power of 5 plus z to the power of 4 plus z cube plus 1 and then remember

in this field F2 I will do mod of z power of 4 plus z cube plus 1. 

So therefore, if I replace this is the term by term you can verify that this result is indeed

equal to z square ok, so therefore it indeed satisfies the property of homomorphism ok.

So, let me stop here so we shall continue from this point in the next class, where we shall



try  to  understand  how we  can  construct  this  transformations  or  homomorphisms  or

Isomorphisms in a more algorithmic fashion ok.

Thank you.


