
Hardware Security
Prof. Debdeep Mukhopadhyay

Department of Computer Science Engineering
Indian Institute of Technology, Kharagpur

Lecture – 01
Introduction to Hardware Security Part – 1

So, welcome to this MOOC course on Hardware Security. So, today we will try to

introduce this topic. So, it will be the part one on Introduction to Hardware Security.

(Refer Slide Time: 00:24)

So, to start with the concepts that I will be covered in today’s class is trying to

understand the relationship between cryptology and hardware security, trying to reflect

about the advantages of hardware in security which is in the form of developing

hardware accelerators. And will also try to discuss about like where hardware can bring

in advantage in terms of security, and why hardware why security should be an important

design criteria for developing hardware right from the beginning and not an afterthought.

(Refer Slide Time: 00:53)

So, to start with cryptology which is essentially the, I would say the more classical

counterpart of computer security it tries to aim at designal of analysis of algorithms or

analyse algorithms to ensured confidentiality. That means, it tries to hide data from

adversities he tries to provide integrity; that means, it tries to ensure that the data is not

modified by adversaries and at the end of the day it tries to ensure that the data is

available to user. So, it tries to make our ensure availability of information.

So, recent days there has been tremendous growth of cryptography which has essential is

date to the development of several primitives which tries to bring for several interesting

applications. Like for example, operations on encrypted databases in the cloud, it tries to

develop cryptographic systems which are even resistance against the development of

quantum computers which are called in the form of post quantum cryptography.

In spite of the development of cryptography practitioners have shown that development

of all you know like mathematically secured programming algorithms are just the

beginning. So, to code Bruce Schneier who is a very famous computer security expert if

you think that your problems can be solved by cryptography then we do not understand

either cryptography or we do not understand the problems. So, therefore, we need to

develop too. So, that at the end of the day cryptography is really realised in our systems

either in hardware or software in a proper fashion in a correct fashion so that we have

end to end security.

(Refer Slide Time: 02:22)

So, the one of the primary requirements of hardware in terms of making you know like in

the context of security is today, is to address the issue that most of the cryptographic

algorithms are very complex and therefore, they essentially have got a huge penalty on

performance.

So, we all you know like in some form or the other at being touched upon on which

cryptography. For example, we are either using computing systems for E-commerce, we

are using credit cards, we are doing we are essentially you know like doing several

transactions on the internet which is essential which all which all are in the underlying

right does cryptographic operations. So, therefore, right I am the whole point is like

when you are trying to accelerate your these operations then at the underlying right you

are doing operation through what are called as secured socket layer or SSL and transport

layer which is like a TLS which are TLS protocols.

So, if you really want to develop an open source I mean if you really want to understand

these protocols then open SSL is a very common and open source implementation of

SSL and TLS and the and the accompanying cryptographic algorithms like hash

functions and other things like. And at the bottle is that they are time consuming in

software. So, therefore, if you really want to implement them on a normal CPU then they

are complex and cumbersome. So, therefore, there is a penalty in terms of clock cycles

which you need to pay if you really, if you just purely rely on software.

(Refer Slide Time: 04:02)

So, what hardware beings in this context is acceleration. So, you can make something

which are called as cryptographic co-processors and you can extend your current

instruction set architecture or ISA to essentially upload some of your cryptography

computations on this hardware or specialized hardware.

One of the, I just enlisted here two of the very commonly known accelerator which is in

the form of what is called as AES-NI which is a special instruction in Intel ISA for

performing AES operation. And the other one is what is essentially shown here as the

PCLMULQDQ which is essentially an operation for a specialized instruction in Intel ISA

for performing carry less multiplication of 2 64-bit operands.

So, therefore, right I mean the advantage that hardware brings in this context is speed for

sure because it can you know you can develop dedicated processing, you can paralyze

your operations and therefore, you can have an end to end acceleration of your

computation. But at the same time it can I mean bringing in hardware can also rule out

many attacks which are otherwise possible on only pure software implementation. So, it

can enhance not only, but also security.

(Refer Slide Time: 05:14)

So, let us take a look at some of these designs. For example, this is a snapshot of Intel

AES-NI instruction which was which essentially is supported in most of the modern day

Intel machines, where you can actually do a round by round AES operations and you can

upload them on hardware.

Now, as you see in this paper it is shown that it is a very fast design. It essentially has got

something like a round 53 gbps of throughput, and has been designed on a very you

know like it has been designed on 45 nano meter technology. So, this is a 2010 paper. So,

it is not really, so recent as of now, but it pretty much shows that using hardware you can

accelerate your software operations of cryptosystems like even like the advanced

encryption standard.

(Refer Slide Time: 06:01)

So, I will show another case study here which is on elliptic curve cryptography processor

or an ECC processor. So, we will go in details about how an easy design would be made.

But at this point we can just think of or conceptualize ECC as black box. So, ECC is a

very efficient public key cipher and in this black box as I show here that there are two

important inputs or two inputs two inputs, one of them is the base point P which is a

point on elliptic curve and the other one is a scalar.

Now, an elliptic curve operation is basically an operation or is an algebraic operation

which is done on a geometric construct which is an elliptic curve and finally, you end up

in getting what is called as a scalar product. So, this scalar multiplication is the central

block of an elliptic curve processor and therefore, we would like to accelerate this

operation. If you are interested to go into a background behind elliptic curve

Cryptography Corporation then you can actually go through this YouTube link here

which is shown down.

(Refer Slide Time: 07:04)

But at this point I am just try to kind of show you that how complex these operations are.

So, now, there is there is a flavor of elliptic curve cryptographic operation which are

called as characteristic tool designs. I will be again explaining what characteristic to

means in my following classes.

So, here suppose imagine that n would be around 163 or 233 according to the standards

and I just try to enlist here number of to finite field operations which are done in by your

elliptic curve crypto processor. So, the number of inversions which are a very, which are

very complex finite field operations again you can observe that the dimension is

something as big as 233 is something like we just proportional with n and I shown

exactly as 2 into n. The number of multiplication is 2 n, the number of additions is 4 n,

number of squarings is again 2 n. Now, these are all done on affine coordinates which

means that the elliptic curve point is being denoted in the usual x y coordinates system.

So, if you take an Intel core II duo processor which is an old system and with 2.93 Giga

Hertz and open SSL version of 1.01 c then the average time which is require for doing

10000 scalar multiplications is something like 8.891 seconds. So, here we show and

design where we just comment and design which is a hardware accelerated which is win

prototyped on Altera Cyclone IV FPGA which is a very popular FPGA device and a

fairly low cost design, fairly low cost platform where it will require around 4.397 second

which is almost like a double speed up. So, you can see that of loading or developing a

co-processor can really help you in improving your support and in improving the

performance of your design in general.

(Refer Slide Time: 08:51)

The other important application of hardware used to enhance security. So, now we know

all of us know that our presently computing systems are naturally vulnerable against

attacks. Everyday day in and day out there are attacks for example, we here of several

vulnerable in our system. So, in order to understand the contacts and try to reflect upon

why our computing systems all vulnerable against attacks let us take a look back into our

architecture text books and remember the famous Von Neumann architecture.

So, Von Neumann essentially contributed to a very basic model which is called again as a

Neumann model which essentially has got three important components, it has got a

memory it has got a CPU, and it is not an IO component. So, the idea is that this CPU is

interacts with the memory and interacts with IO bus, the IO essentially talks with

external what is typically the keyboard audio or your audio display units.

So, now, the CPU essential again it has got several blocks. For example, it has got the

arithmetic logic unit, it has got the program counter where your current address where

the current address of your instruction resize and we have got registered first form of

memory the memory. The memory in general they has got an hierarchy which means that

there is the memory in typically is slower compared to the CPU and that brings what is

called as a memory vault, in order to bring that memory vault we have a memory

hierarchy. For example, we have a cache memory to be to sit in between you know like

the between the main memory and between your CPU browsing speed.

(Refer Slide Time: 10:19)

So, that the basic paradigm of von Neumann architecture is what is called as a stored

program where the programs are also sequence of instructions which is stored in the

memory like data.

So, the CPU typically consists of the program counter which indicates address of the

next instruction which is to be executed. The arithmetic logic unit which performs

arithmetic and logical operations, and then you have got very high speed memories

which are called as registers and you have control unit with basically does or interprets

instructions and causes them to be executed one after the other. You have got an, and I

say we have got a memory hierarchy which means you tried to bridge between the first

form of memory, I mean the fastest form of memory and also the you will and I mean

and your I mean you try to bridge between the CPU which is lower terms of rising speed

and also between yours slow memory or the RAM.

(Refer Slide Time: 11:20)

So, now when we talk about the memory right which as essentially which stores the

instructions data and the intermediate results then it has got a several hierarchy whether

resisters have got the highest level and has got the fastest and have the fastest form of

memory. Likewise right we have got the input or output block which transmits and

receive results and messages or information from and to the outside world respectively.

However, there are several bottle necks of the Von Neumann architecture.

For example, if I give you this as this bottle neck arises. Because of the fact that both

memory I mean both data as well as the code resides in memory and therefore, how do

you know that whether 0x90ABCD for example, which is a funny looking number is

whether it is code or whether it is a data.

Now, the operating system or the OS essentially has got no way to distinguish between

whether it is a code or whether it is a data because of the and therefore, right you

essentially can have malwares which can freely execute in your systems. On the other

hand because of the shared because of the shared memory bus there is a bottleneck which

is called as a memory wall, and in order to reach the memory wall we have got several

artifacts in computing architectures in the form of cache memories, branch predictions

and so on.

Many of these attacks actually target these presence, like the presence of the cache

memory or the presence of the branch predictions and therefore, it is fundamentally kind

of arises because of the fact of because of the Von Newman architecture.

(Refer Slide Time: 12:47)

So, here is a very simple depiction of an attack which is a purely software that which is

called as a buffer overflow. It may be pointed here that buffer overflow till now remains

as one of the most popular forms of software attacks. So, these attack here has been

shown here that has been made of two, has been made of two you know like program or

two function calls, one is the main function call and there is an another function call

which is called function and has been written in C.

So, you can observe that here in the main function there is an integer variable b which is

being kind of defined as b equal to 0 then there is a call to the function call function and

then followed by a b equal to 1 assignment followed by a print of b of b. So, since a call

function does not effect b what I would expect is that b should be printed as 1. On the

other what we will see is that because of some certain operations here in the call function

which essential it kind of skips this b equal 1 line and therefore, prints b equal to 0. So,

therefore, the program does a wrong computation. So, this attack has been shown in the

paper which is called as shown here as smashing the stack for fun and profit written

another pseudo name of Aleph One.

(Refer Slide Time: 14:00)

So, in order to understand the working of the attack let us take a look at the stack. So, the

stack essentially stores these the corresponding data as shown here. For example, it

stored 12 bytes for buf and you can see that if you go back to the code there is a buf is a

interger variable, it is an integer array of size 3.

And if you assume that 4 bytes have been located, so this is done on old machine of

mine. So, if you see the 12 bytes have been allocated for buf then there is a then other

allocated like 4 bytes for the integer pointer, so it is another 4 bytes and that is followed

by the frame pointer which again takes another 4 bytes. So, if you take the relative

distance between this point like the buf for the starting address the starting point of buf to

the return address then it is something like buf plus 20 points to the content in the stack

where the return address is restored.

So, now that that essentially explains these line which shows as that we do and you

know like a we basically increment buf or the starting location of buf with 5 and

therefore, we basically access the return address. So, therefore, int star ret therefore,

points to this return address. So, what we do the next is that we increment the value of

the return address by 7.

(Refer Slide Time: 15:16)

So, now why 7? In order to understand that we can take a look in to the gdb dump and

here is the portion of the gdb dump which shows that this is the line which have or

which is been highlighted in red is the line which I would like to kind of skip because

here is where b becomes or b gets assigned to 1.

In order to skip this line we observe the difference between these addresses which are

been shown here as 0x080483ff and 0x08048406. So, this difference is 7. So, therefore,

what we try to do is in order to address in order to skip this line we increment these by 7

and therefore, what happens is that rather than returning to this line the program returns

to the next line method skips the b equal to 1 assignment and therefore, b equal to 0 gets

printed.

Now, these are very simple illustration of a buffer overflow attack, but you can probably

imagine that there can be stronger forms of attacks which one (Refer Time: 16:11). For

example, one can change the return address to point out to an address where a malicious

program on malware is located and that can lead to the triggering of a malware in a

normal computing system.

(Refer Slide Time: 16:27)

So, in order to alleviate this software only attack we essentially can bring in hardware.

For example, one of the popular approaches which people can do is they can try the

implement a hardware stack. So, what we need in one of our voice is trying to

implement hardware stack.

Such that whenever it whenever it encounters jal which is the jump and link, which is a

common jump instruction and similarly other instructions. What we try to do if we try to

maintain hardware stack, we try to kind of develop custom instructions where hardware

stack gets enabled or it get disabled, whether where we freeze the hardwares stack or we

unfreeze the hardware stack. But the idea is that we try to see that whenever I mean

whenever the buffer overflow tries to modify the return and return address which is

probably stored in some, you know like which is stored in some value then what happens

is that rather than taking the value from the software stack the data is been taken from the

hardware stack and therefore, right the damaged that the software attack is doing remains

inconsequential.

So, in this work which we protect on open risk platform where the register r9 is

essentially very is where a return address gets located. So, whenever the hardware stack

encounters j dot r whenever we encounter a j dot r instruction then with register r9 as a

parameter it pops its top value and therefore, passes that has a return address rather than

the what is being actually stored in the stuff software stack.

So, therefore, right with this simple you know like incorporation of a hardware stack we

can actually an also of course, incorporation of these dedicated instructions which are

shown here as custom 7, custom 8, custom 1 and custom 2 we can actually alleviate the

effect of a buffer overflow attack on our software.

(Refer Slide Time: 18:21)

The other point which I would mention is that, which I try to hint upon is that because of

the memory wall we have the cache memory which tries to basically write the idea is

that you have got a very fast memory. But on the other hand the main memory or the

memory in general did not become fast as in the same phase as the CPU.

So, therefore, right what you have is you have got a cache memory, which tries to bridge

in this; which tries bridge in this time differences. And therefore, right what in general

happens is that if there is a cash sheet then access time is less than and the power

consumption is less. On the other hand if there is a cache miss then the access time is

more and the power consumption is more. So, that implies that you typically write in the

computer architecture try to improve the cache sheet, so the data is largely found in the

cache memory and not and you do not really need to go into the slow form slow

memory.

But you can also observed that the adversary if it is able to properly time and kind try to

distinguish between two access, the timing difference of two accesses, then it can try it

can figure out whether there is a cache sheet or whether there is a cache miss. Now, this

can lead to trivial leakages of the secrets keys.

(Refer Slide Time: 19:37)

So, in order to illustrate this I will just to here a very famous attack which is called as in

the popular name of what is called as prime and probe attack, whereas spy comes first

comes in an fills up the cache memory with some garbage data.

And then the access is given to the target encryption which is in this case an AES. Now,

when the AES comes in it basically access certain portions of the cache memory and

therefore, right it basically evicts some data from the cache. Now, if the handle comes

back to the spy program then the spy program starts timing its own access, then you note

that these data is being you know like is being kind of evicted from the cache and

therefore, what we will expect is that these access we have got more time and that is

because of the fact that there has been cache misses.

So, the adversary can distinguish between cache sheets and cache misses and that can

reveal to the adversary the footprint of the of AES encryption. So, the adversary can

know where exactly the encryption accessed and that can lead to trivial leakages of the

key as we will see in our subsequent classes.

(Refer Slide Time: 20:45)

So, therefore, in general micro architecture attacks target our present day a computer

architectures because our present day computer architecture have been fundamentally

design with performance as an design criteria. Security has always been in afterthought.

For recent days there has been a famous attack is called as spectre and meltdown which

essentially showed that what the targeted was an optimisation technique which is called

as speculative execution, where a computer system perform some task that may not be

needed.

For example, a branch; for example, a branch is because you know like some because

there is in a pipeline processor because of a branch there is a significant amount of

penalty that needs to be incurred if the branch fails. And therefore, there is an artifact in

computing architecture which are called as branch predictors which tries to predict

whether a branch should be taken or not taken.

So, these kind of artifacts which are in general called as speculative execution are

targeted by this by these attacks which are called a spectre and meltdown, but you can

observe that since these design principles are so deep rooted in our present architectures

that suddenly changing them is real hard task. So, again to quote Bruce Schneier fixing

them either required of patch the results in major performance it or is impossible and

requires an architecture I mean re-architecture of the entire CPU, of the entire CPU with

which is kind of infeasible. And what is more surprising is that it took so many years to

discovered such kind of attacks.

(Refer Slide Time: 22:20)

On the other hand security can be a game changer. This shows, this diagram shows how

the stock sheet Intel for example, when there was this discovering be at the beginning of

this year and it shows that the Intel stock fails significantly. For example, the Intel

shared went down by nearly around 5 present and therefore, there I mean it shows that

security vulnerability can indeed become quit costly.

(Refer Slide Time: 22:51)

So, therefore, right it brings us to the fact that we need to make about, we need to make

security as an important design criteria, and hardware security has got all the its new in

terms of its discovery and in terms of its existence in literature its quit resending in that

context. But still it has got profound influence on the modern a world. Hardware profile

provide us opportunities for excellent in cryptographic operations, but at the same time

award architecture of the present architecture has been fundamental the developed with

performance in mind and therefore, there are significant flows which can be targeted by

adversities. And therefore, what we need is we need proper design for security

guidelines to ensure that our hardware is dose not only give us performance, but is also

secured.

So, with this I would like to thank you.

