
Embedded System Design with ARM
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 09
ARM Instruction Set (Part III)

So, we now discuss the control flow instructions that are available in the ARM

Instruction Set.

(Refer Slide Time: 00:31)

So, this is the third part of our lecture series on ARM instruction set. So, here we shall be

talking about the control flow instructions. Well, in particular we shall be looking at the

branch and link instruction which are primarily used for handling subroutine calls and we

shall talk about the conditional execution instruction which you can also regard to be

belonging to this category control flow.

(Refer Slide Time: 00:58)

Let us look at the control flow instructions. Now as I had said earlier, control flow

instructions are those which changes the sequence of instruction execution right. So, in

the normal flow of execution; now in memory if we look into the memory map the

instructions are normally stored one after the other, the program counter it points to the

next instruction to be executed. So, whenever one instruction finishes execution, you

increase or increment PC by 4. So, that now PC will point to the next instruction, each

instruction is of size 32 bits. So, you will have to increase it by 4 bytes ok. This is how it

works.

Now in control flow says that here this PC is not being incremented by 4, but rather you

are updating PC with some other value. So, the next instruction will be from somewhere

else. So, in terms of the types of control flow instructions, there can be unconditional

branch, conditional branch, branch and link and conditional execution instructions. There

can be broadly these 4 categories of instructions.

(Refer Slide Time: 02:35)

So, let us look at these instructions one by one. The first one is the unconditional branch

instructions. Now in the unconditional branch instructions, we have an instruction

called branch which is just B mnemonic is just B. So, in the assembly language we just

say B some label Target.

So, in the assembly language level I can use a label somewhere. It means after this

instruction we shall not go to the next instruction, but rather next instruction will be here.

So, the way pc will be incremented is that instead of doing pc equal to pc plus 4. So,

what we are saying is that we will be doing pc equal to Target; so, that the next

instruction that will be fetched or executed will be this instruction which is stored here.

This is called unconditional branch instruction meaning that whenever you have this B

instruction, there will always be a control transfer to this new address right. This is called

unconditional branch.

Now you can also have this transfer of control depending on some condition. These are

called conditional branch instruction. Now here I have shown one example, I have shown

one conditional branch instruction called Branch if Not Equal; BNE stands for Branch if

Not Equal. Let us look at this simple code segment, you will understand what this is

doing. Here we are initializing some register r2 to 0 MOV 0 to r2 r2 is becoming 0 then

some instructions here some calculations are going on. Then we are adding r2 to 1 r2

plus 1 result stored back into r2.

So, r2 is in cream incremented by 1, then we are comparing whether our r 0 this will be

r2 sorry this will be r2. So, here you are comparing whether r2 is becoming 20 or not, but

if it is not 20 not equal then we go back to loop. We repeat this and once it becomes 20 it

is equal to 20, it comes out and it continues with the next instruction which means this is

a simple loop we have implemented that will be repeating a set of instructions 20 times.

And, you can use this conditional branch instructions to implement this kind of

conditional loop.

(Refer Slide Time: 05:42)

Now, not only branch if not equal a variety of other conditions are possible as this list

shows. Unconditional branch you can either use B there is another mnemonic BAL, it

means the same thing. Now in terms of the conditional branch, you can have equal or not

equal, not equal I have already illustrated. You can have plus or minus branch if plus,

branch if minus, branch if carry clear, branch if carry set depending on the carry you can

take a jump. Branch if overflow flat clear overflow set; you can check whether there is

an overflow or not, branch if greater, branch if greater than or equal branch if less than or

branch if less than or equal.

So, you can make some calculations or comparisons based on that you can take your

decision whether to jump somewhere else or not depending on all these branch

conditions which are supported in r.

(Refer Slide Time: 06:54)

Now, talking about subroutine calls; well in many computers or instruction set

architectures many of them, you may be familiar with you may have seen there is some

instruction like call. There is a call instruction which you use to call a subroutine. So,

when you call a subroutine normally what happens? The program counter is pushed in

the stack you jump to the subroutine, subroutine gets executed, the last instruction of the

subroutine will be a return instruction. What the return will do? It will pop the last

element from the stack, it will load it into program counter which means you return back

to the program from where the call instruction was executed the next instruction, because

PC always points to the next instruction right.

So, that is how the things are handled in a conventional processor, but in ARM there is

no call instruction rather there is an instruction called branch and link, BL in short. So,

what branch and link does? Here there is no stack as I told you in ARM the architectures

does not support in stack. There is a special register r14 which is called the link register.

So, the return address means return, what is return address? Return address is nothing,

but the current value of program counter. So, whenever an instruction is executed the pc

is immediately incremented by 4. So, it is pointing to the next instruction that is the

return address.

So, the return address will be saved into the link register, it will be transferred to the link

register and then you jump to the subroutine branch. And when you are trying to return

back so, you will have to jump back to the address which is stored in r14. This is how in

ARM subroutine colon return can be handled. Let us take a simple example here; a very

small code segment is shown. Suppose there is a program in the program somewhere you

have given a subroutine call instruction branch and link BL is the mnemonic for that and

this is the subroutine you are calling.

Let us say MYSUB is the level some subroutine you are calling and this red box

indicates the body of the subroutine. Now inside this subroutine there will be some

instructions, but before jump into the subroutine what will happen? In this link register

this r14, this next instruction address let us say this is X, this X will get stored in r14

right. The current program counter if it is X, X will get stored in r14 and then it will be

branching to MYSUB. In MYSUB, there will be several instructions, it will execute. At

the end when it wants to return back, what it does? It executes some MOV instruction.

What kind of MOV? MOV r14 to pc.

So, what will happen here? This r14 contains the value of X. If you load pc with X, now

pc will become X. So, when the next instruction will be fetched, it will be fetched from

this address X. So, essentially you are branching back or jumping back to this location

and you are resuming execution from here ok. This is how you are implementing

subroutine call and return in ARM ok. But here it is clearly mentioned here that in this

way you cannot implement nested subroutine or recursion which is so, common like you

are calling a subroutine A, A is calling A subroutine B, B is calling a subroutine C; you

see here you have only one register to store the return address r14.

So, when you are calling A, your return address is stored in r14, but when a is calling B,

A s return address will be stored in r14 again. So, the previous r14 value will be

overwritten. So, you will never be able to come back to your program right. So, nested

subroutine calls will not work in this way, you have to use some other mechanism.

(Refer Slide Time: 12:05)

So, here I am showing a simple example again where we are illustrating the use of a

software stack. So, I said ARM does not support a stack, but we can implement a stack in

software when using our available instructions. Let us assume that we have a memory

location we want to implement or stack here this r13. I said r13 is a register which you

typically use as the stack pointer. If we want to let us say we are using r13, let us say

these are some memory locations and r13 is pointing somewhere let us say r13 is

pointing to here and in this program what I am illustrating from my main program, I am

making a call branch and link MYSUB1, I am calling MYSUB1and from mice this is

MYSUB1 ok.

This is the body of MYSUB1 and from MYSUB1, you see I am again calling another

subroutine MYSUB2. This is a nested call two level nesting I am demonstrating. So, in

the first level of nesting just to ensure that my r14 value does not get lost, what I am

doing you see we are using a multiple register store instruction STMFD. So, what it

does? It essentially saves r14 and some other registers which I may be needing I want to

also say let us say r 0 r1 r2. These three and also this r14 link register all these 4 registers

are stored in r13 stack here; they are stored out here right. Then you branch to MYSUB2

branch and link.

So, now your r14 gets overwritten, now it will contain the return address of this

instruction. Let it be, let MYSUB2 gets executed and once it is done you return back to

the address stored in r14. So, you return back here and resume execution from here. Now

at the end well you have a matching load multiple register load instruction, what you do?

You load again from r13; this r13 is pointing there. Here your loading means again r 0 to

r2 and not r14 you are giving pc. So, the last file will be loaded to pc.

So, whatever this r14 value was saved in the stack that will now get loaded in pc which

means it will automatically return back here. So, this kind of a multiple register load and

store instruction you can use to implement this kind of nested subroutine call all or even

recursion a subroutine calling itself. Just I am giving you an idea this multiple register

load store instructions are very useful to save and restore status in stack when you are

implementing subroutine calls in a general way.

(Refer Slide Time: 15:41)

Fine, now a very important feature which this ARM instruction set has this already we

have mentioned earlier is something called conditional execution. This is a unique

feature which we normally do not see in other instruction sets. The designers for ARM

have very carefully thought out these set of instructions. This says that the instructions

can be made conditional; conditional means they may either execute or they may not

execute. I can specify some condition well along with every instruction there will be a

field where some condition is specified if this condition holds, then it is executed;

otherwise it is not executed right.

So, let us take an example. Suppose in high level language, I want to implement

something like this. So, I am specifying in a high level C like syntax if the value of r2 is

not equal to 10, then I want to do this calculation r 5 equal to r5 plus 10 minus r3.

Suppose I want to do this. Here I have a solution just a second. Suppose this one I

implement like this yeah I implement like this let us first see this implementation. So,

what I do? I have to check r2 with 10, whether it is equal to 0 or not equal to 0.

So, my requirement says if it is not equal to 0, then do this calculation. So, what I am

doing? I am comparing r2 with 10, here I am comparing. If it is equal then I am not

supposed to do this right; if it is equal I am jumping I am branching to this skip. I am

skipping these two instructions right, but if it is not equal then I am going through this

add and subtract I am first adding r2 is 10, 10 to r5 then I am subtracting r3 from that

right. Now see this implement is fine, there is no problem here.

But the only thing that I want to say is that here, I am requiring one branch instruction,

but if I use the conditional variety of implementation like this; you see what we have

done here we are again comparing r2 with 10. The next add and subtract instructions

what we have done, we have added with the conditional postfix not equal to; that means,

if not equal to then you do add if not equal to then you do sub. So, what is me not equal

to? This 0 flag is tested the compare instruction will be will be setting or resetting the 0

flag. If 0 flag is 1, it means r2 was equal to 10. If 0 flag is 0 which means r2 was not

equal to 10.

So, when I say ADDNE, the computer is actually testing the 0 flag; if it is 0 then execute

this; similarly subtract NE if the 0 flag is 0, then execute this right. So, this conditional

variety of instructions as you can see helps in avoiding one branch instruction. It is

mentioned here helps in removing many short branch short means you are branching

over a very short distance skipping a few instructions. So, in a general code you will find

many such instances. These conditional instructions can help in eliminating many such

branch instructions make your code shorter and more efficient right. This is the main

advantage.

(Refer Slide Time: 20:18)

Now the various instruction postfix that are available in the early example I have showed

the any version not equal to. But you can use so, many variants Carry set, Equal,

Overflow set, Greater than, Greater equal, Plus, High higher on same. So, many options

are there. So, along with an instruction you can specify what condition, you want to

specify and the instruction will be executing depending on the validity of that condition

right. You can see how many condition there 4, 5, 6, 7, 8 16 are there which means as

part of the instruction there must be 4 bits reserved somewhere which will be specifying

this condition which condition fine.

(Refer Slide Time: 21:13)

Let us take another example. Here we are checking for two conditions together let us say

I have a case like this. If r1 equal to r3 and r5 equal to r6. Then you do some calculation.

This is the conventional approach, you first compare r1 and r3; if they are not equal you

can straight away skip; that means, you have you do not have to do it. If it is not equal to

straight away come to skip, then you check the next condition r5 an r6. If they are not

equal then you go to skip otherwise you add.

But in the conditional variety, the second compare instruction also you can make

conditional like first one is compared r1 r3 then compare if equal r5 r6; that means, if the

first comparison resulted in equality then only you execute this compare. And finally, this

add equal to will generate; that means, if the second one also generates equality then

only add will be executed because the 0 flag will be set accordingly.

So, you see here you are eliminating two branch instructions ok. So, your code is

becoming so much more efficient. So, this ARM instruction set the addition of this

conditional execution of instructions, this has added a new dimension to the way people

can write codes. So, the code can be very compact very efficient and in terms of

execution time will also take less time because there are fewer number of instructions all

right.

(Refer Slide Time: 23:14)

There is another kind of an instruction which also changes the value of pc of course, it is

not so much important from the point of view of embedded system design. These are

these are called supervisory calls. There is an instruction called software interrupt is

SWI, this is like a subroutine call. This will also jump to a subroutine by saving the

return address in some register r14, but the main difference is that while doing this jump

it will also change the processor mode to supervisor mode because these instructions are

typically used in environments where there is an operating system and you are trying to

request some service from the operating system. You given is SWI call so, it jumps to the

OS and also the mode changes to supervisory mode. Normally when the OS executes,

the processor mode is supervisory that automatically happens right. So, we are not going

into too much detail of this it is not required.

So, we have seen in a nutshell, the various kinds of instructions which are there in ARM

and the unique features in particular I have talked about the conditional execution in this

lecture. So, earlier you have seen in terms of the arithmetic and logic instructions when

you are executing, the second operand can be specified in so many flexible ways. So,

there are many ways in which you can make your code shorter by taking advantage of

these flexible methods then the multiple register transfer instructions and so on.

So, as I said that in this course we shall be looking at a lot of experimental

demonstrations based on some microcontroller boards. Now in the next lecture we shall

be introducing you to one of the boards based on which many of the experiments shall be

demonstrated. We shall be discussing the basic features of the boards the different kind

of connectors and how to use them and subsequently we shall be seeing actually how

they are put to use ok. So, we shall be seeing them in our next lectures.

Thank you.

