
Embedded System Design with ARM
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 07
ARM Instruction Set (Part I)

We shall now start a very short discussion on the ARM instruction set. Now, you shall

see later as part of this course, we shall be showing you lot of demonstration on some

ARM based boards and also some Arduino boards. There we shall be writing our

programs in a higher level language, but here in this and a couple of other lectures we

shall be discussing about the low level features of the ARM processor and for that we

need to have a basic idea about the assembly language features that ARM architecture

provides. So, the title of this lecture is ARM Instruction Set, the first part of it.

(Refer Slide Time: 01:07)

Now, here we shall be broadly talking about the various categories of ARM instructions

and in particular the data processing instructions that are provided by the ARM

instruction set architecture, ok.

(Refer Slide Time: 01:27)

Talking about the ARM instruction set, you see as a developer you need to develop or

design an embedded system, you will be having a hardware platform, a microcontroller

based system and you have to write a software for it.

Today most of us develop the software in some high level language either in C or in

Python or in Java in some language like this, but it is always good to know the lower

level features of the processor in order to have an informed decision that which processor

may be better for a particular application, ok. So, it is with this motivation we are giving

you a brief introduction to the assembly language features of the ARM processor which

is a reflection of the hardware features that are provided by the ARM platform, ok.

So, broadly speaking well any instruction set not necessarily the ARM instruction set

they can be categorized into various groups or broad categories. So, in ARM let us define

these categories as data processing, data transfer and control flow. So, the instructions

which are there they can be categorized or classified into one of these three types. Let us

try to understand.

Now, in a microcontroller I have said most of the modern microcontrollers not the first

generation ARMs the subsequent ones they are based on the Harvard architecture. So,

you will be having a separate program memory and a separate data memory. So, the

instructions which constitute the program that will be stored in the program memory,

while all temporary data which will be manipulating on will be stored in the data

memory. So, among the registers this program counter is one register which will be

pointing to the address of the next instruction in the program memory, right. So,

whenever a new instruction is brought or fetched from memory it will be fetched from

the address which is stored in the program counter.

So, when I am talking about the data processing instructions we are talking about

carrying out various arithmetic and logic operations on data. Now, ARM is based on the

risk philosophy of architectures most of the ARM features are risk based reduced

instruction set computer based. Now, here all data seeing instructions they operate only

on registers, they work only on register; that means, when I say add we will be adding

the contents of two registers and storing the result back into another register. So, memory

is not coming into the picture here at all, ok.

Now, when we talk about data transfer here there are options we can transfer from one

register to another or we can transfer from register to data memory or data memory to

register. So, these options are all there these will constitute data transfer instructions.

And, control flow instructions are those which will alter the sequence of execution of a

program. Normally as I said program counter will be pointing to the next instruction to

be executed, now, as the instructions are executing the value of the program counter gets

incremented consecutively. But, whenever you have some instructions like jump or a

subroutine call suddenly that sequence will be disturbed you will be going to some other

address and from there you will be starting to fetch your instructions, right.

So, this is what is meant by change of control flow and such instructions are termed as

control flow instructions. So, essentially control flow instructions are those which will be

altering the value of program counter in some way so that the normal sequence of

instruction execution will be altered, ok fine.

(Refer Slide Time: 06:17)

So, we first talked about the data processing instructions that are present in the ARM

instruction set. Now, in the ARM instruction set the first thing to notice that the registers

are all 32-bit in size, the arithmetic logic unit which is inside the processor that also has

the capability of operating on 32-bit numbers, ok. So, all operands that are being

operated on are 32-bits in size this is something fixed in ARM and this operands can be

either registers. So, you may carry out these operations on registers or some of the

operands may be constants these are called literals or immediate values. I may say add

the value 10 to the content of a register. That 10 is like a constant that is called a literal or

an immediate value, that value 10 is specified as part of the instruction that is called

immediate operand right.

And, the result after the calculation is also a 32-bit result and this will be stored in some

particular register there is of course, one exception there is a special multiply instruction

where the result is stored as a 64-bit number. Now, you know whenever we multiply 2 n

bit numbers the result can be twice n bits the result can become double in size. So, when

you multiply two 32-bit numbers the result can be maximum 64-bit in size. So, there is a

version of multiply instruction where the result can be stored in two registers 64-bits, this

is an exception, and the other thing is that all operands and the result registers that we

use in an instruction will be specified as part of the instruction.

Now, in these lectures we shall not be discussing about the instruction encoding; that

means, exactly how the bits of the instruction word specify the registers; we shall not be

going into that detail of the architecture, but essentially what kind of instructions are

supported those we shall be discussing, ok.

(Refer Slide Time: 08:55)

First let us talk about the arithmetic instructions. Well, arithmetic instruction the most

basic instructions are addition and subtraction. So, ARM provides with various addition

and subtraction instruction alternatives. Let us see what kind of instructions are there.

First is a simple add instruction, well here as an example I have shown to three registers r

0, r 1, r 2, but you can have any registers here not necessarily only r 0, r 1, r 2. The first

one represents the destination, the second and third indicates the two source operands.

So, when I write add r 0, r 1, r 2 the values of r 1, r 2 will be added and the result will be

stored in r 0, right. There is a version add with carry which is normally used to handle

multi precision arithmetic. So, when you are adding two 64-bit numbers you add first

two 32-bit numbers, if there is a carry the next 32 be numbers you would be adding with

that carry. So, you should have an add with carry version of instruction this is add with

carry. Here what it does same thing it adds r 1 and r 2 with carry if the carry bit is 1 then

an additional 1 will be added, if the carry is 0 then nothing is added.

Then there is a normal subtract instruction this is r 1 minus r 2 result is going into r 0 and

there is a similar borrow concept in subtraction for multiplication arithmetic again. So,

there is an subtract with borrow version as we see it is called where the carry flag is used.

Now, the actual calculation is done like this r 1 minus r 2 plus C minus 1. This takes care

of the borrow during subtraction operation, ok. Now, there are two variation of the

subtract instructions, where the role of the operands are reversed. Like here sub

instruction we are saying r 1 minus r 2. Now, if I say RSB this stands for reverse subtract

this means r 2 minus r 1. Similarly, there is a version with borrow reverse subtract with

carry. So, it is r 2 minus r 1 plus C minus 1.

Now, you may ask why you need two kinds of subtract instruction. I can always write

this instruction as let us say subtract r 0, r 2, r 1. I can always write like this why I need

another RSB instruction. The need is that we shall see later I have not talked about it.

This ARM instruction allows this second operand to specify to be specified in more

flexible ways like this second operand r 2, this can be specified in multiple ways. So, if

you have a reverse version of subtract then that flexible operand can be subtracted from

or the normal data can be subtracted from that flexible operand both ways you can have.

So, we shall be seeing what kind of flexibility the second operand provides you, but this

reverse subtract allows you to add a normal opponent from a flexible operand or from a

flexible operand you can subtract a normal operand both options are provided.

And, in these subtract instructions you are viewing these 32-bit numbers as either

unsigned or as 2’s complement signed numbers. Now, with respect to addition and

subtraction in binary these two make no difference. The way the arithmetic is carried out

is exactly identical, ok. So, they actually mean the same thing, all right.

(Refer Slide Time: 13:21)

So, after this addition and subtract instructions there are some bitwise logical instructions

there are instructions like AND, ORR and Exclusive ORR. So, when I say AND, let us

say similar to add r 0, r 1 and r 2, what happens r 1 and r 2 are the two operands. So, they

are all 32-bit numbers, ok. Let us say this is let us say this is r 1, this is r 2. So, the last bit

of r 1 and r 2 are bitwise ANDed together and the result is stored in r 0 in that

corresponding bit here.

Similarly, the next two bits are ANDed together the result will be stored here. Similarly

this bits and this bit are ANDed together result is stored here, this is called bitwise logical

operation. So, I can do AND operation OR operation or I can do Exclusive OR operation,

these three instructions are supported. Now, there is another instruction also which is

supported at the bitwise level this is called bit clear instruction in short BIC. So, the

actual meaning is the register r 1 is ANDed with the complement of r 2; you take a not

operation and then do an AND. So, that in r 2 whichever bit is 1, if you do or not those

bits will become 0 if you do I and with r 1 those corresponding bits of r 1 will become 0

because and anything AND 0 is 0. So, actually because of that this is called a bit clear

instruction.

So, wherever in r 2 you have one those corresponding bits in r 1 will be made 0; that

means, those will be cleared that. So, this is also called a bit clear instruction, ok, fine.

(Refer Slide Time: 15:33)

Then you have some register to register move instruction, ok. This also we are defining

under the data manipulation instruction category. Now, here there are two kind of register

to register move that are supported one is a simple register to register move. You see

when I am saying move register to register I need to specify only two operands, just like

the other instruction we have seen where three operands are required here we need only

two, ok. So, when I say move r 0 comma 2 it means the value of r 2 is copied into r 0, ok.

And, there is another version move negated; that means, if I say MVN r 0 and r 2 here

this r 2 will be complimented the not of r 2 will be moved into r 0, right.

So, there are many applications where this negative value of our 32-bit number is

required. So, there you can use this MVN instruction move negative, right. Now, here in

the encoding as I said that you do not need three registers. This r 1 which we are

mentioning earlier, the middle operand that is not required here only two operands are

required.

(Refer Slide Time: 17:13)

Now, there are a variety of compare instructions. Now, you recall in the program status

what current and the saved program status words that we discussed in our previous

lectures there are some condition flags you recall there were zero flag, there were a sin

flag there was an overflow flag and so on. So, these flags actually keep track of the

results of some arithmetic or logic operation. When you add two numbers these flags will

keep track of the fact whether the result was 0, whether the result was positive or

negative or whether there was an overflow that took place because of that operation, ok.

Now, sometimes you just need to compare two numbers and take a decision. You do not

you are actually not doing addition and subtraction and storing the results somewhere

just you need to compare two values. So, there are a host of compare instructions

available. Like you can say simple comparison; you compare r 1 and r 2 and; that means,

internally you are actually doing r 1 minus r 2 you are subtracting and you are checking

whether there is 0, negative or positive, so, accordingly the flags will be set.

There is another version compare negative; actually it means you do r 1 plus r 2 and then

set the flags. Result of addition of the two numbers, but you are not storing the result in

here this is the difference between a normal add and subtract instruction and the compare

instruction. Here these instructions do not produce any result in a register; this is what

you should remember. It only sets the condition flag so that you can use that result later

depending on the condition flag you can take some decision, right.

Similarly, there is test kind of a comparison. This comparison means you are doing

logical and bitwise and of r 1 and r 2 then you are checking the result is 0 or nonzero

whatever then accordingly set the flags. Similarly, you test for equality, test equal.

Equality means exclusive or you say exclusive are you not own property if you take the

exclusive OR of 0 and 0 the result is 0, if you take exclusive OR of 1 and 1, that is also 0,

but if you take exclusive OR of 0 and 1 or 1 and 0, this is 1.

So, the result of an exclusive OR will tell you whether the bits are equal or they are not

equal right. So, if you take XOR of entire 32-bit numbers and see the result is 0, this

means that the two numbers are equal, all the bits are giving XOR value of 0, that is why

the result is 0, ok. So, these instructions as I told you they affect the condition codes

carrying 0, this sign or negative flag, overflow these are stored in the current program

status register.

(Refer Slide Time: 20:53)

 There are ways of specifying immediate operands. Like as I said you can specify some

immediate data, like I can write like this with this hash symbol I can use the second

operand as an immediate open I can write r 2 comma hash 2 this means r 2 will be added

with the constant 2. I can write subtract r 3 hash 1; that means, r 3 minus 1, ok. Like this

I can add an immediate operand as my second operand of an arithmetic or logic

operations. Like for example, if I say AND of this, what does this mean? Ok, hash as I

told you hash indicates immediate operand and this ampersand indicates that the number

I am specifying is in hexadecimal.

So, when I do and with 0 f what does that mean? 0 f in 32-bit means 0 0 0 F and F means

what? Four 1’s; so, if you do AND only the last four bits of the number will remain all

the others will become 0. So, actually what you are doing, this are for the last four bits I

am showing like this bit number 0 to 3, these 4 bits are copied to r 6 the remaining bits

are all made 0, right. So, with respect to the immediate values well there is of course,

some restriction of the range maximum value of this number you can represent.

So, the range is typically 0 to 255, you can also regard it as a 2’s complement number

you can give a negative value also and there is another facility there are additional 4 bits

in the instruction where you can specify that these operand value will be rotated and

means within that 32-bit range these 8 bits can be positioned either here or here or here

or here. So, you can make your number as per your requirement and then you can do add

subtract and you want. So, that bit position is some multiple of 2 I am not going to detail,

but it has a flexibility in that you can specify that where that immediate data will fit in

inside that 32-bit number.

(Refer Slide Time: 23:33)

Then, I talked about some flexibility in the second operand you see here this shifted

register operand comes in. You recall in the architecture I told in ARM there is a barrel

shifter. The second operand optionally goes through the barrel shifter you can shift it and

then you can do some arithmetic or logic operations. So, in the assembly language level

also you can specify like this you can specify add r 1, r 2, r 3 and in the fourth parameter

you can say logical shift left hash 3; that means, three position this actually means the

second operand is shifted left by three positions and then added to r 2, ok. So, you can

specify this as a constant how many bits want to shift or you can also specify some

register logical shift left r 5; whatever is the value in r 5 that many bits will be shifted.

Let us say if r 5 is 20, then it will be a 20 bit shift. You see here like this r 3 is shifted left

by whatever is the value of r 5 that many positions. Now, you see here we have a facility

of specifying the second operand in some flexible way. Either in the normal form or in

some shifted form that is why this reverse subtract operation we recall there I can

subtract a register from the shifted value of another register, that is why this reverse

subtract facility is also there.

And, not only logical shift left there are various shift and rotate instructions or options

available; logical shift left, logical shift right, rotate right, rotate right means when you

shift right the last bit coming out will again get inside the register, that is rotate right.

Rotate right extended means the register you are rotating right then there will be your

carry flag. This bit will go into this carry flag and carry flag will get rotated in it, that is

why this is something like a 33-bit rotation this is called extended by 1 bit and arithmetic

shift left is same as logical shift left, no difference. And, arithmetic shift right means if it

is a negative number when you shift right, 1 will be added to the most significant bit side

if it is positive number 0 will be added, these are the various options.

(Refer Slide Time: 26:17)

So, in this diagram some of these are shown. You see here if you say logical shift left 5,

the original register will be shifted left by 5 positions and 0’s will be added on the right.

If you say logical shift right by 5 position similar you shift right and 0’s get added.

Now, if I say arithmetic shift right, but the number is positive which means the MSB was

0 then 0’s will be added, but if the number was negative which means most significant

bit was one then 1’s will be added on the left side. And, rotate as I said whatever goes out

rotate right whatever goes out of the register this will be getting inside here. So, you are

rotating and rotate extended means along with the carry flag as that said it will be a 33-

bit rotation. These are the various options.

(Refer Slide Time: 27:23)

Now, there are some multiplication instructions also. Multiplication in this simple form

is r 1, r 2, r 3 like this only. So, you multiply the two numbers r 2, r 3 and you take only

32-bits of the result because multiplication result can be 64-bit, but you ignore the high

order bits you assume that the result is fit the result will fit within 32-bits and you take

only the last 32-bits, and in multiplication immediate operations cannot be used to only

register operands.

And, there is another instruction which is very much useful for digital signal processing

or DSP applications, this is called multiply and accumulate. There you need to

continuously multiply a number with some other number and add to another value

continuously. So, here this multiply accumulate instruction will have four register

operands and the meaning is you multiply r 2 and r 3 and add it to r 4. So, not only

multiplication also an addition and you take the last 32-bits of the result and as I said a

64-bit multiplication version is also available which you are not discussing right now

here ok, that is also available.

So, with this we come to the end of this lecture where we have talked about some of the

arithmetic and logical instructions which are available and supported by the ARM

instruction set architecture. In the next lecture, we shall be talking about the data transfer

instructions; what are the various kinds of data transfer instructions that can be used to

transfer data between registers and memory.

Thank you.

