
Embedded System Design with ARM
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 06
Architecture of ARM Microcontroller (Part III)

So, we continue with our discussion. In this lecture we shall be talking about the

Architecture of ARM Microcontroller, the third part of it.

(Refer Slide Time: 00:30)

Now, in this lecture we shall be mainly talking about the processor modes and registers

in the ARM architecture. There are some special registers, we shall be trying to tell you

the necessity and roles of this special register; something about exception handling and

there is something called thumb mode of execution also very briefly about that. So, again

we shall not be going into very much detail of this because this course is primarily meant

for a hands on demonstration and training for designing various systems, but learning

some basic concepts on the architectural issues will always help you in becoming a better

designer. This is the main purpose of trying to give you with some of the initial

backgrounds of the embedded system design in the architectural concepts ok, fine.

(Refer Slide Time: 01:33)

So, let us start to the processor modes. Now in the ARM processor during execution at a

given time, the processor can be in one of 7 modes, and this table summarizes these 7

processor modes. The user mode is the normal mode during execution of a program.

When a program is executed normally, we say that the system is in user mode. This user

mode the acronym is usr, we sometimes denoted by usr, this is the normal program

execution mode. Now you know in processors, we can have interrupts from external

devices some interrupt signal might come. If it comes, the program that is executing will

be suspended, we will have to go to some interrupt handling routine run that routine and

then again come back and resume the interrupted program. Now in ARM two different

levels of interrupt processing are permissible or allowed one is called high priority or

other is called normal priority.

Now, this FIQ is the high priority mode. This FIQ mode is entered when a high priority

interrupt is activated and is acknowledged. Now the point to note is that when a high

priority interrupt is being processed, if some lower priority interrupt comes in the

meantime; they will not be acknowledged, they will be ignored. So, higher priority

interrupt will be having real higher priority over the lower priority ones.

They will be handled first. And IRQ is the low priority or the normal priority interrupts.

This IRQ is the processor mode which is the mode you see this FIQ and IRQ are saying

is the mode when the corresponding interrupt handler routine is executing that interrupt

has come we are handling the interrupts. During that time we say that processor is in

either FIQ mode or in IRQ mode well.

There is a supervisory mode which most of the modern processors they have, there are

some instructions like supervisory called trap; these are or you know there is a

instruction called SWI software interrupt. There are various names to the syndromes, but

the purpose of this instructions is that, these instructions are some ways to transfer

control to the operating system. Well in a computer where there is an operating system,

these instructions allow the processor mode to be changed from user mode to supervisor

mode and then just like a subroutine called control will jump to the supervisor or the

operating system right; this is what is done here.

Now, in the supervisory mode is svc. This is as it is mentioned here a protected mode and

this mode is required only when there is an operating system in your implementation

well. In all embedded system application you will not require this, but in system where

there is really an operating system and you need some protection you need to have this

mode of execution. And abort is a mode again; this is an optional mode for cases where

you want to have memory protection that you want to see that when a program is

executing; you are supposed to access only this region of memory. If accidentally your

program tries to access any memory location beyond the permissible limits, this abort

interrupt will be generated and the corresponding processor mode is called the abort

mode; for handling memory access violations the processor goes to the abort mode right.

And undefined is actually something which is kept for future expansion. Well some

instruction opcodes have not been defined, they are undefined. So, if by mistake you are

trying to execute an instruction whose opcode is undefined, you get an undefined

interrupt and the processor mode goes to undefined state und. And there are instances

where you want to run some privileged operating system tasks for that you typically go

to this system mode.

The system mode and supervisory mode are very much related. So, I am not going into

detail of this because for an embedded system design, these are not really required very

really we will be requiring these modes in an actual system implementation ok. So ARM

supports all these modes. So, ARM is quite flexible in terms of its architectural features

copy of registers. ARM is a large set of general purpose registers as I mentioned earlier.

(Refer Slide Time: 07:25)

So, so in total there are 37 registers. All of these registers are 32 bit long. Talking about

dedicated registers, there are 7 registers which have specific purpose; 1 is the program

counter PC. It is called there is 1 which is called current program status register. Well for

those of you who are familiar with the some micro processors some architecture like

8085 or any other microprocessor, we will be knowing that there is something called

condition flags.

Whenever some instructions are executed this condition flags are set or reset there is 0

flag carry flag overflow flag and so on. So, this CPSR or the current program status

register is like a flag register. It consists of several flags which are set depending on the

mode of the processor or the instruction execution right.

And there are 5 saved program status register. Now this concept is interesting. There is

one CPSR and there are several SPSR, saved program status registers. You see in a

conventional processor whenever an interrupt comes, what do we do normally? We save

all the registers in the stack that can include also the status registers in the flags. Go to

the interrupt handler, finish everything, come back restore all registers and status register

from the flag and resume execution, but in ARM there is no support for stack, there is no

instruction to push or pop instructions in stack or from stack.

So, pushing and popping the status into stack you cannot do like that. Just for that reason

what is done? There is a special CPSR copies which are maintained; suppose a program

is running current status is stored in CPSR, there is an interrupt that has come. So, the

content of the CPSR will get copied into an SPSR then interrupt handler will run off

before coming back the content of the SPSR will be restored back into CPSR. So, it will

be restored back.

So, there is no stack as such it is the users responsibility to restore the value from the

CPSR and then again move it back and forth right. And of course, there are 30 general

purpose registers; these are named typically r 0 to r 29 fine.

(Refer Slide Time: 10:39)

Now, depending on the processor more, it depends how many of these registers you can

actually access. Now 16 registers are typically visible in a specific mode of operation;

this 16 registers are as follows.

There are 13 general purpose registers r 0 to r 12 stack. There is no stack I told, but r 13

is your mark as the stack pointer. If you want to implement a stack yourself by software,

you can use this r 13 for the purpose and r 14 is a link register. You see for subroutine

call instructions let us say for a conventional processor, the value of the program counter

is also pushed in the stack, but here there is no stack. So, there is a special register called

the link register, the value of the program counter gets copied into the link register.

Whenever there is a subroutine call and when you are returning back from the subroutine

whatever is then the link register is copied back into program counter.

So, you start from there again right and program counter is accessed as r 15 and of

course, current program status register. Now here I shall show a picture later which will

show you the different registers, how they exist in different modes.

(Refer Slide Time: 12:29)

Now, in terms of the general purpose register where you are expected to store some data,

I told you the registers are all 32 bits in size. But in terms of the operations which are

supported, you can have 8 bit operations 16 bit which are called half word operations or

full 32 bit word operations. So, in terms of the 32 bit word, the whole 32 bit is referred to

as the word.

And when you are using half word operations the lower 16 bit is used, this is the half

world and for byte operations the last 8 bits are used right. So, you should remember this.

When you are using a byte operation, the last 8 bits of the register will be used and for

half word last 16 bits will be used ok. And these are not used for athletic operations, only

for data transfer operations because all arithmetic operations are only 32 bits in size. But

when you are transferring data from one place to another, you can transfer 8 bits or 16

bits or 32 bits. From memory you can transfer 8 bits of data into a register, it will go into

the last 8 bits, fine.

(Refer Slide Time: 13:58)

Now, current program status CPSR, so what does it contain? So, it contains as I had set

the flags. So, what are the flags? There is a overflow flag denoted by V, there is a carry

flag C for subtract operation; you call it the borrow, there is a zero flag it checks whether

the result is zero or nonzero and the sign flag negative or positive right. Now in addition

the processor can be in many modes.

Well processor I said there are 7 modes, but to keep with future expansion ARM keeps 5

bits to store mode. So, in 5 bits you can support up to 0 to 32; 32 modes can be supported

maximum and this bit number 5 6 and 7, they are meant for thumb state. Then 6 and 7

are for enabling and disabling the interrupts the high priority interrupts and the normal

prior to interrupt. If these bits are set to 1, these are disabled if there is 0 they are

enabled; the other bits in between they are normally not used, they are unused.

(Refer Slide Time: 15:26)

Now, talking about the special register just a relook again this r 15 is the program

counter. So, as you know so program counter always holds the address of the next

instruction in memory to be executed right. So, if the destination register is program

counter which means you are jumping to there ok. Link register r 14 is here marked as a

link register for subroutine call instruction.

Now, in ARM the subroutine call instruction is called BL branch and link this BL stands

for branch and link. Branch and link means will in the BL instruction, it will be

specifying the address where to branch. Before branching, the current value of the

program counter will be saved into LR r14 and then the destination which is specified

will be loaded into PC. So, that jump will take place right. So, when you are coming

back, the value of LR will be copied back into PC.

So, you resume execution from where you left and r 13 is a you are not from stack of

course, there is no stack in ARM, I told you but it is reserved as a pointer. If you want to

implement it in software, you can do it. And CPSR as I told you this holds the current

status register with respect to the program that has been executed and whenever some

exception or interrupt comes, the CPSR gets copied into one of the special or saved

program status registers SPSRs. They will hold a copy of the CPSR. So, when you come

back from the exception routine that a SPSR has to be copied backed into CPSR before

you resume execution; this is how they work.

(Refer Slide Time: 17:45)

Now, talking about the program counter, there are two modes of execution; one is the

ARM mode, one is the Thumb mode. Let us make the distinction clear here. We first talk

about the ARM mode of execution which is the default mode of execution. ARM mode

says that all instructions are 32 bit wide. There are 32 bit instructions and their word

aligned. Word aligned means all instructions must start from an address memory address

I mean that is some multiple of 4. This is what we mean by what aligned. They need for

doing this is that well again I am not going to detail of this.

When you interface memory with the microcontroller, the processor there is a concept

called memory interleaving. If you have 4 way interleaving, then 4 consecutive bytes

starting from an address which is a multiple of 4 can be transferred in a single clock

cycle. But if it is not so, you will be requiring 2 clock cycles. So, your memory transfer

will become slower just to have faster memory access ARM insists on word alignment

and multiple of four means for the last two bits are 0. So, any address with the last two

bits 0 means it is a multiple of 4. Therefore, when it is in ARM mode, the program

counter is expected to hold the address of our instruction right. So, always the last 2 bits

will be 0 of the program counter.

So, the last two bits of the program counter are actually not used in the ARM model they

will always be 0. So, this already you have mentioned the PC can point to 8 bytes ahead

or 12 by depending on the number of stages. But there is another mode of execution

whenever you do not need the full power of 32 bit processing maybe we are using the

ARM processor in a very simple application, where smaller instructions 16 bit

instructions are there a subset instruction subset. Here in the thumb mode, the

instructions are 16 bit wide; that means, 2 bytes and they are half word aligned means the

instruction addresses are multiple of 2. So, earlier it was multiple of 4, it is multiple of 2

multiple of 2 means the last bit of the address will be 0.

So, in the program counter, the last bit is 0 which is not used right. So, this is the main

difference between the ARM mode and a thumb mode. ARM mode is a superset where

all instruction encoding a 32 bits thumb mode is a subset of that where you make all the

instructions shorter 16 bits because of which may be the total program memory will be

requiring too much smaller, your code density will be much higher. For small

applications, you can have much cheaper mode of you can say means implementation

right. So, thumb mode is used for such cases where you need small systems.

(Refer Slide Time: 21:50)

Now, this diagram gives you an overview about the registers in the different modes I told

you. Well in the in the user or the system mode, well you have access as you can see to

the 13 registers r 0 to r 13 then r 13 14 15 spv link and PC and the CPSR and the 4

SPSRs which are there, they correspond to the other 5 modes. If I interrupt FIQ comes

then CPSR gets copied into this SPSR and this r 0 to r 7 will be there in FIQ, but the

other registers will be specific to a FIQ. If you come back, they will again change and in

IRQ r 0 to r 12 the whole thing is there, only r 13 r 14 are specific to FIQ. SVC also and

if abort also.

So, this depends which are the registers which can be accessed when you are writing the

interrupt handler right like you are when you are writing the first interrupt handler a FIQ

interrupt handler, you are allowed to use only the registers r 0 to r 7 in the user mode and

these are the specific registers which you can use, they will be automatically used in the

FIQ mode. And they will not override the original registers here right, you need not have

to save restore them. There is another copy of those registers in the register bank fine.

(Refer Slide Time: 23:36)

Now, talking about the CPSR once more, this is this is again the picture of the CPSR I

told earlier. The last mode the 5 bits, now the specific bit combinations are shown here.

For these 7 modes, the mode bit combinations are defined like this 1000 the means user

mode 1001 is a FIQ mode and so on.

And condition code flag, I already mentioned negative 0 carry and overflow and

interrupt disable if it is 1, the corresponding interrupts are disabled and thumb mode this

bit indicates whether you are processing in the ARM mode or the thumb mode. If the bit

is 0, then you are in a ARM mode. If it is 1, you are in thumb mode. So, in this way it is

decided whether which mode of execution you are selecting 32 bit mode or 16 bit mode.

(Refer Slide Time: 24:38)

Now, talking about exception handling, there is a process like this here followed; there is

an interrupt vector kind of a table this is called a vector table. This vector table is present

from address 0 on 0x00 means 0x means hexadecimal 00; these are hexadecimal

numbers 0004080C. So, each of these entries are 4 bytes long this can be seen from the

address next one is 04080C10 and so on.

So, whenever any exception occurs exception is interrupt memory where access violation

and define instruction all these are exceptions some kind of interrupt or the supervisory

call. So, whenever this happens, the CPSR will be copied into the corresponding SPSR.

So, you know there are 5 SPSRs depending on the type of exception CPSR will be

copied to the correspondings saved program status register.

And the corresponding bits of the CPSR will be set depending on which mode you are in

and during interrupt processing; the interrupt bits will be disabled because if they are

enabled then another interrupt may come in between also. So, in order to avoid nested

interrupt from coming while you are doing the interrupt handling interpret, bits can be

disabled. Then before coming back well the return address will have to store in this LR

register corresponding to that mode you see, there are separate LR registers for the

different modes and PC is loaded with the vector address. If you jump to this for return,

the exception handler will do the reverse thing. So, it will be loading back that SPSR into

CPSR equal to copying to a spacer CPSR and LR will be continuing the return address; it

will be transferring it to PC ok. So, it will be jumping back.

Now the point to notice that here the entries out here, these are not addresses of this

interrupt handler rather these are instructions. Typically these are jump or call kind of

instructions. So, when you come here reset so, there will be a jump from here to the

routine which is handling reset. Well if it is let us say this FIQ so, if you come to 1C,

here there will be an instruction which will be jumping to the interrupt handler for FIQ

and so on. So, these are all one word instructions that are stored in the vector table. These

are not addresses of the routines which are stored it is the actual instruction some

instruction that is stored here right.

(Refer Slide Time: 28:58)

So, this is what I have already mentioned. The vector table is stored from address 0x00 to

0x1c. So, one word allocated for every exception type and as I have said, this word will

contain some instruction; some jump some branch instruction ok. It will branch to the

corresponding interrupt handler. So, it does not contain any address you should

remember this. This already I have mentioned.

(Refer Slide Time: 28:27)

So, I am talking about the ARM and thumb instruction set a quick comparison. So, in

ARM mode the T bit in the CPSR is set to 0 and for thumb mode set to 1. The

differences are as follows. Instruction size in ARM mode, there are 32 bit instructions; in

thumb mode as I said there are 16 bit instructions. The number of main instructions are

58 and 30. Conditional execution I told you, conditional execution is a feature where

some instruction will be executed depending on some condition is true or false.

So, in ARM we had almost all the instructions support condition execution, but in thumb

only for branch instruction you can check for zero-non zero, carry-no carry, but other

instruction do not support conditional execution; just only the branch just the normal

case. Data processing instructions in ARM mode, it supports barrel shifting like I told

you when you add 2 numbers, you can say you add the second numbered shifted left by

10 positions. This will be done automatically by the barrel shifter, but in thumb such

instructions are not there, here there are separate shift instructions and there are separate

ALU instructions.

So, there is no single instruction that combines shifting and arrow adding together such

instructions are not there in thumb. Program status register in ARM mode, you can do

read write in privilege mode, but in thumb mode you cannot access those program status

register; those are prevented from being accessed. And for registers in ARM mode, you

can use the 15 GPR general purpose registers r0 to r14 and the PC, but in thumb you can

use the eight GPRs, 7 high registers and PC. It is the high register means the high order

16 bits of the registers. So, there are some specific registers which can be accessed. So,

only a subset can be accessed here that is what is meant.

(Refer Slide Time: 31:01)

Conditional execution told you, let me take an example here. We shall be discussing

some more cases of condition execution later. Conditional execution it controls whether

or not CPU will execute the current instruction. Now most instruction in ARM, it allows

a condition attribute to be specified. Let me take an example an instruction like this.

Normally if you do not use this EQ, just imagine this EQ is not there then move r1 hash

0 means, this r1 is initialized to 0 right. Now if I give this MOVEQ, this means I am

checking this zero flag in this CPSR. It says if the zero flag is set which means equal

condition is true, then only you do the move otherwise you do not do the move.

So, this instruction will be executed depending on certain condition ok. So, this is how

the conditional executions exist. We shall see later that using this kind of condition

execution just allows us to prevent branch instructions in many cases. It makes the code

density higher less number of instructions.

So, with this ah, we stop with our brief discussion on the ARM architectures. From the

next lecture onwards, we shall be moving on to some aspects about the ARM instruction

sets and the other features about ARM which will be helpful in the actual

experimentation that we shall be showing you we shall be giving a demonstrations on.

And all the demonstrations that we shall be showing you would be based on some ARM

modes and also a few experiments, we shall be showing you on the arduino boards ok.

This we shall be seeing over the next few weeks.

Thank you.

