
Embedded System Design with ARM
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 04
Architecture of ARM Microcontroller (Part I)

In this lecture we shall be starting our discussion on something about the ARM

microcontrollers. What are their architecture like, what are their specific features like and

how are they different from the earlier generation of microcontrollers ok. So, the topic of

this lecture is Architecture of ARM Microcontroller, this is the first part of the lecture.

(Refer Slide Time: 00:41)

Now, in this lecture we shall be covering some general ideas about the ARM series of

microcontrollers, how they have evolved and some of the important architectural features

ok.

(Refer Slide Time: 00:57)

Let us look into the history first very briefly. Now the architectural ideas that built or that

have evolved into this ARM class of microcontrollers. This was developed long back in

1983. There was a company called Acorn computers which was the first to develop and

evolve such ideas. Now these ideas were little different because they started to develop

the architectural ideas based on the reduced instruction set concept, RISC architecture

concept ok. And at that time there was a very popular microprocessor called 6502 from a

company called Mmostech that was used in one of the very popular microcomputers

called BBC micro that was a microcomputer which was used quite widely and during

that time and this Mmostech 6502 was the microprocessor at that time it was an 8 bit

microprocessor that was inside that microcomputer.

So, the first attempt of these people were to replace that processor by a better processor

more powerful processor, which will make the BBC micro faster and more powerful ok.

So, this resulted in the first commercial RISC implementation. So, it was not called

armed during that time, but it evolved into the ARM architecture. There was a company

which finally, got founded in 1990. The name ARM is the acronym for advanced RISC

machine. So, you see in the name itself the word RISC is embedded.

So, ARM architecture essentially borrows the concepts from the RISC idea, from the

RISC architectural concept ok. And initially this company ARM was jointly formed and

owned by this account which was the initiator, Apple was also there and there was

another company called VLSI. This 3 companies came together and formed this new

company called ARM..

(Refer Slide Time: 03:37)

Now what is so interesting about ARM? So, why do you have to talk specifically about

ARM? You may ask in this course why are you specifically trying to use ARM as the

vehicle for teaching embedded systems. The reason is this ARM have been this has been

you can say increasingly used in many applications, they are the most popular category

of microcontrollers which has seriously used in embedded system applications.

Let us take some examples that you all know about the iPods from Apple through which

you can listen to music, you used to listen to music now they are discontinued there was

an ARM processor inside that. Benq, Sony Ericsson these are very well known

companies they manufacture TV sets and many audio visual other equipments, there are

ARM processors inside each of these equipments. Typically they started to use ARM 9,

but subsequently they updated or upgraded them to the later version of ARM processors.

This Apple iPhone all of us are familiar with and some of the very popular Nokia phones.

They all have the ARM11 processor inside them.

Now, this is a pretty old piece of statistics. Till 2010, 90 percent of all serious embedded

applications has this kind of ARM processors inside them. Now you see let us talk about

one thing, well when you talk about embedded system application there is a processor

inside, I said depending on the application you decide how much power you need from

the processor. If it is a very simple application you do not need a processor as powerful

as ARM. The PIC I told you about there are very simple PIC processors available, which

are very very cheap, those are very simple 8 bit processors you can even use them.

But ARM processors are typically 32 bit and above. So, you use ARM processor when

you need reasonably powerful computation capability that will make the heart of your

embedded system right. Now another thing is that this ARM processors they have very

low power consumption and of course, reasonably good performance needless to say

because of this low power consumption, they are very widely used in battery operated

devices. There are many battery operated devices like the mobile phones; I talked about

the iPods there were Apple processors inside ok.

And if you look at this diagram, this diagram is not really but just I wanted to show that

over the years from left to right this is the axis of time, the armed 32 bit processors I was

talking about in the last lecture that the present trend is to develop an application specific

integrated circuit were not only the ARM processor but many other things are inside the

chip.

So, you see here this boxes that we show here these are those ASIX, here CPU is only

one part of it, there are many other things. Now across the years ARM Cortex M 0 M 0

plus M 3 M 4 these have evolved. Now the board with which you shall be giving some of

the demonstrations this is actually based on the ARM Cortex M 4; one of the latest chips

in the series right ok. Now talking about the ARM processors there are some very

interesting features, let us look at some of the notable features one by one.

(Refer Slide Time: 08:09)

First thing is that, it is essentially a reduced instruction set computer based architecture.

Now we shall go into some detail what a RISC architecture is and the design is pretty

powerful. It borrows some advanced architectural ideas in contrast to conventional or

contemporary microcontrollers that had very primitive kind of designs.

Well I talked about 8051 that was a very popular microcontroller no doubt, but

architectural wise it was pretty primitive, it did not use any kind of architectural

enhancement or advanced features ok. Now as I told you this ARM processor is not just

one, but a whole family of ARM processors exist and the most important thing is that in

order to maintain backward compatibility, which is very important in this kind of

evolution all of this share essentially a common instruction set.

Of course in the later generations some additional instructions have been added, but the

older instructions are also carried through such that; a program which was developed for

a older generation would run pretty well for the next generation also right. Now the

design philosophy here was of course, first thing is that we need a small processor so that

we can have lower power consumption and can be used for embedded systems

application.

So, the size of the processor should be small this is one thing that is very important it

should consume low power that is also very important right. And high code density what

do mean by high code density? You see in microcontrollers I told that memory what

program memory and data memory are all inside the chip. So, there is a scarcity of you

can say real estate you cannot put very large memory inside.

So, there is a maximum limit to the size of the program that you can run. Let us say my

program memory size is 100 kilobytes let us take an example 100 kilobytes. So,

whatever I write must fit within this 100 kilobytes. So, if my instruction set supports that

in this 100 kilobytes, I can pack my code very nicely, so that I can implement more

functionality greater functionality as compared with some kind of competing architecture

where a much more memory would be required to implement the same thing. What I

mean to say is that, suppose I have an application x that I want to implement in a

conventional architecture maybe it will be requiring 120 kilobytes but in RISC ARM

Architecture I can fit it within 100 kilobytes.

This is something called high code density. There are some instruction features we shall

be talking about which allows us to reduce the number of instructions required. So, this

can take advantage of limited memory and physical size restrictions. And of course, here

there is lot of flexibility in the interface. We can interface with a wide variety of memory

systems, very slow or also relatively fast memory systems it can all be interfaced with

depending on the scenario. And of course, reduced die size means when you are actually

fabricating the chip. The size of that silicon is very small, so that when you develop that

ASIC I was talking about that ARM would occupy a very small portion of it.

So, you can use the remaining space to put in much more you can say additional

functionality to make the ASIC very powerful right ok.

(Refer Slide Time: 12:40)

So, some of the popular ARM architecture there are many I am only shown 3, this ARM

7, 9, 10 there are 11 and beyond. Some of the main features I am written down, ARM 7

has 3 pipeline stages, we shall be talking about pipeline later in the next lecture. Now

pipeline stage essentially means how the instructions get executed, there is a concept of

pipelining we shall be explaining this.

So, there are 3 stages fetch decode execute. So, it supports high code density I told you

low power consumption and for low end systems where very high power is not required

this ARM 7 is a very popular architecture. So, you do not need very high power ARM

processors everywhere whatever you need inside a mobile phone you will not need

possibly inside a refrigerator, you need very simple kind of calculations there right.

Coming to ARM 9 first thing is that these are all backward compatible, but the pipeline

stages announced to 5 stages; fetch decode execute memory right and the concept of

cache memory came in and there is a separate instruction cache and separate data cache

In ARM 7 instruction and data were both in the same memory. So, it was like a von

Neumann architecture, but from ARM 9 onwards the architecture became it started a

shift towards Harvard architecture right. Talking to ARM 10, the main difference was the

pipeline was further enhanced by adding another stage this issue, this issue was added to

this right.

So, in this way the basic architecture started evolving making the processor more

powerful and faster by adding novel architectural concepts.

(Refer Slide Time: 14:42)

Now, this table gives a quick comparison among 4 ARM family members ARM 7, 9, 10

and 11. Well you can also see the year when it was first introduced 95, 97, 99 and 2003.

First thing is pipeline depth; depth means how many stages of the pipeline are there? We

only we already talked about ARM 3 stage, ARM 9 5 stage, ARM 10 6 stage and then

ARM 11 we have 8 stages.

So, we are enhancing the number of stages in the pipeline to make the execution faster in

some sense. The clock frequency sometimes the speed of a processor is determined by

how fast we can make a clock. In ARM 7 it was 80 megahertz then 150, 260, 335 and so

on. So, the clock frequencies are increasing, the processors are becoming faster. Power,

power if you see the power consumption is a measure of the clock frequency, faster is the

clock more will be the power consumption.

So, you should estimate the power consumption with respect to the clock frequency we

are using because every microcontroller has a range of permissible clock frequencies. So,

it depends upon you what clock frequency do you want, if you can operate with a lower

clock frequency and serve your purpose it is fine you will be you will be consuming

much lower power. So, power consumption in microcontrollers are typically measured

by milliwatt per megahertz ok.

So, higher the megahertz clock you just multiply it by that you will get the total mini

watt of power consumption. So, for ARM 7 it was 0.06, 0.19, 0.50 and 0.40. You see in

ARM 11 due to some low power design take makes the power consumption got reduced

from 0.5 to 0.4 and throughput is how fast instructions can get executed. Now again

throughput is a function of the clock frequency.

So, in microcontrollers again you can measure throughput typically by million

instructions per second per megahertz. So, so if it is on 80 mega you have to multiply

this by 80 you will get so many million instructions per second. So, the figures are 0.97,

1.1, 1.3, 1.2. Architecture as it said ARM 7 was based on von Neumann this is v von

Neumann, but subsequently there is a move towards Harvard Architectures and inside the

processor there is a built in multiplier.

So, there was an 8 by 32 multiply in the first 2 generations whereas, for the next two

generation there was a 16 by 32 multiplier because many instructions, many applications

for example, the digital signal processing applications they frequently require

multiplication operation. So, if there is a hardware multiplier built in it speeds up

operation quite significantly..

(Refer Slide Time: 18:13)

Now, the point to note I said that ARM the basic concept or evolution started from the

RISC architecture. So, ARM is based on the RISC architecture. So, what is RISC? RISC

is based on some architectural features.

This architectural features are like this, with respect to instructions. There is less number

of instructions reduced set. Instructions are simple so that all instructions can be

executed in a single cycle. They are all of fixed length so that decoding of the instruction

becomes very easy and your hardware for the controller becomes very simple ok. Then

with respect to the pipeline here we shall see later that instructions are typically executed

in a pipeline in all modern day processors. Now if the instructions are simple they are

fixed length, then decoding of the instruction becomes very easy. You can decode in one

stage itself, you do not have to again look at the instruction and try to find out what this

instruction was ok.

So, there is no need for micro programming which is a standard norm for the complex

instruction set computers. You can directly implement the control unit in hardware, if

you do it in hardware it also becomes much faster you can run it at a higher clock.

Registers one characteristic of RISC architecture is that there is a very large number of

general purpose registers, typically 32 or more there are a large number registered where

you can temporarily store your data during calculations.

There are very few special purpose registers unlike CISC Architectures where there are

lot of special purpose registers like program counters stack pointer base registers and so

on and so forth right. And another important thing is that RISC is based on a load store

architecture means there are some load and store instructions load and store these

instructions are responsible for transferring data between registers and memory. All other

instructions the ALU instructions arithmetic and logic instructions they only work on

registers, they do not access memory.

These kind of instruction set is sometimes called load store architecture, that only load

and store instructions access memory all other instructions they work only on the

registers right. Now I told earlier that even the CISC machines of today the Intel class of

machines they use micro programming, they translate those complex instructions into

some kind of micro programs simpler instructions which look more like the RISC

instructions.

So, they also implement RISC concepts in some way, they make an initial translation

which they execute using standard RISC techniques, RISC instruction execution

techniques right. So, these are some of the concepts behind the RISC architecture. Now

talking about ARM, well although the name ARM contained this RISC this middle R is

the acronym for RISC..

(Refer Slide Time: 22:13)

But strictly speaking ARM is not a pure RISC Architecture; there are some features

which have been introduced in the architecture because they are very useful in embedded

system applications, which are not RISC characteristics. So, it is their ARM starts to

deviate slightly from the RISC architectural concepts. Some of the differences are as

follows: Certain instructions require variable number of clock cycles for execution. So,

while talking of RISC I said all instructions should be exhibited in a single clock cycle,

but in ARM some of the instructions can be more complex, it can require multiple clocks

such instructions are there.

So, one classical example is multiple register load store. Like normally we will load a

value from memory into 1 register, but ARM allows you to specify in such a way that the

value loaded will be loaded into let us say 4 registers. So, to write into those 4 registers

you need 4 clock pulses. So, you cannot do it in one cycle you need multiple cycles right,

such multiple data transfer instructions are supported in all. And there is something

called a barrel shifter which is a very common architectural concept.

Barrel shifter is a hardware which allows multiple bit shifting very efficiently in a single

cycle. So, this barrel shifter is part of the ARM architecture and there are many

instructions which directly utilize this barrel shifting capability. Let me take an example

suppose there is an add instruction which adds 2 registers let us say r 2 and r 3 it adds,

but I can also say you add r 2 and r 3 shifted left by 4 positions. So shifted left by 4

positions will be done by the barrel shifter, it will not take any additional time, in that

single clock cycle everything can be done.

Because of the presence of the barrel shifter this kind of shift and operate kind of

instructions are possible to implement in a very efficient way. And another feature is that

there is a feature in ARM instruction set in in the ARM architecture you can say, that you

can configure it in the thumb mode. Thumb means thumb is a subset of the of the ARM

instructions, which works in 16 bit mode. Normally ARM processors are 32 bit

processors, but there may be many application where you do not need that power, you

need much simpler power you can have the thumb instruction set which is essentially a

16 bit instruction set right so.

So, if we use instructions which are smaller this can further lead to a shortening of the

total code size your code density can further improve right. And there is another very

interesting feature we shall be discussing this in detail conditional execution. Like you

can say you add these 2 numbers provided the 0 flag is set. Well in conventional

processors if the 0 flag is set you can have a jump if 0 jump if non 0 zero kind of

instructions, you do a jump then check if it is not 0, then add a draw is do not add; that

means, you need so many jump instructions.

But if you have a conditional instruction like you say add if 0 flag is set then you are

avoiding the jump instruction altogether. So, number of instructions, also get reduced

right. And of course, there are some enhancement, some digital signal processing

instructions like one example is multiply and add, this kind of instructions are there they

have been added to the instruction set. Because of these so ARM has deviated slightly

from the pure RISC you can say category, but still it is a fairly powerful processor mostly

based on riscRISC, only for a few cases it deviates because of very good reasons of

course.

(Refer Slide Time: 27:14)

Now talking about this von Neumann and Harvard architecture you already talked about

earlier, this ARM 7 and the even older processors were based on von Neumann, there

was a single memory and r nine 9 and the later processors they have 2 separate memory

instruction memory and data memory and inside also there is an instruction cache and a

data cache separate. Now another feature is that I would like to say is that ARM

processors does not have any separate instructions for input output, they use something

called memory mapped IO.

Like let us say this is your total memory area, this is your memory right? Now there is 1

part of memory which you reserved for the IO devices. Normally when you access

memory you store the data here, but when you are trying to access some address in this

region there were decoding circuitry which will automatically be accessing the IO ports

instead of the memory.

But there will be a same decoder for memory and IO operation. Say load store

instructions are typically used to transfer data between memory and register, the same

load store instructions will be used for reading from IO port or writing into IO ports,

there are no separate instructions for input and output ok. So, no specific instructions for

IO, you use the same load store instructions right. The address to be used will be the

address corresponding to the IO devices. Well we are not going into the detail of this just

the basic concepts.

(Refer Slide Time: 29:08)

So, this is the ARM typical architecture, I just wanted to show you just a snapshot of it.

You see you have all the registers say register bank, here we have the arithmetic logic

unit. So, one of the data is coming directly from the register bank here and the other one

you see there is a barrel shifter sitting here.

So, if the other data can be shifted and then apply to ALU or it can even come without

that, so with no shifting. The multiplier is sitting here whenever you need this multiplier

hardware you can multiply and bring it to the, a bus and there are some other instruction

features. There is an address register address implementer, so these are the address bus

and here is the data bus for interfacing with memory.

But inside this is interesting, there is a multiplier, there is a barrel shifter which are

sitting before the ALU. This makes the implementation of some of the instructions very

efficient. So, with this we come to the end of this lecture. We shall be continuing this

discussion over the next couple of lectures where we shall be looking at some of the

more additional features that are there in the ARM instruction set and also the ARM

architectures.

Thank you.

