
Embedded System Design with ARM
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 02
Design Considerations of Embedded Systems

In our previous lecture, we talked about what an embedded system really is and what it is

not. Now, in this lecture we shall be talking about some of the design considerations in

embedded system design. Well, when we design an embedded systems, what are the

things we should look at, and what are the design consideration and other tradeoffs that

you should be aware of. These are the things that we shall be talking as part of this

lecture.

(Refer Slide Time: 00:52)

So, we shall broadly be talking about the design challenges as I said, and we shall also be

trying to understand some of the more important design tradeoffs. Design trade off

means there can be some conflicting parameters you can try to improve one of the

parameter, but it might degrade some other parameter. You cannot improve everything all

together this is called trade off. And there are some cost metrics which are quite

important non-recurring unit cost matrix. Well, we shall also be talking about these.

(Refer Slide Time: 01:31)

Let us look at some issues relating to design challenges first. Now, when you are

designing an embedded system, your primary design goal will be of course to design a

system which realizes the desired functionality. Suppose, you are trying to build an

embedded system for a washing machine, so your embedded system should be able to

function properly in that environment. It should be able to control the washing machine

in a proper way ok, so that as a user you would be happy with the performance.

So, desired functionality is the keyword, some implementation that realizes the design

functionality. But in order to have this implementation, you may have some design

challenges. Well, in the sense, there may be several design metrics we shall be talking

about, and you may have to optimize several of them. Like well, user may say I want

something which is low cost, small in size, very powerful and also very rugged. But you

see if you try to reduce the cost, naturally your performance will also go down, your

ruggedness can also be compromised. So, you cannot have best of all worlds; this is

something we refer to as tradeoff. These are mutually conflicting in most cases.

Now, this design metric whatever we say it is some feature of the implementation. We

shall be talking about some of them which can be quantified that means you can measure

them in some way. Like, for example, I say cost well cost is easy to measure I can say

this much rupees or this much dollars that is a method of quantifying the cost. Similarly,

this measurement and evaluation you can compare two alternatives, you can say which

one is better than the other.

You see now here I have given a small example where these three circles refer to three

parameters or design matrix speed, cost and quality. Well, in most designs, we want to

improve on all these three, but as I had said these three are often mutually conflicting.

Well, if you try to reduce the cost you will be sacrificing on the speed and quality and so

on ok, alright.

(Refer Slide Time: 04:26)

Now, let us talk about some of the common design metrics that we talk about with

respect to an embedded system design ok. We are concentrating ourselves to the design

of embedded systems only. First important parameter is called non recurring engineering

cost. Well, non recurring engineering cost means this is some kind of initial cost.

Like for example, let us take an example. Suppose you have an idea design idea. Now,

you are going to manufacture those systems. But before you start the manufacturing

process, you will have to install some machines in your factory which will help you in

the manufacturing. And that initial installation will incur some initial cost; this is what is

referred to as non recurring expenditure or engineering cost. This will be required only

once at the beginning. Now, once we have that infrastructure ready, so you can

manufacture your units the systems as many you want you can manufacture 10, 20, 100,

1000 as many you want ok. So, non recurring cost is the one time initial cost.

And once you have this NRE cost covered, you talk about unit cost. So, after we have

that infrastructure, what is the cost of manufacturing for every copy of the system that

you define as the unit cost ok. Now, unit cost will also consider the cost of the raw

materials, labor cost and so on and so forth right. Size is an important parameter I talked

earlier. Most of the embedded systems need to conform to a very small form factor, so

that it can fit nicely inside the environment for which it is meant ok.

Performance well again this depends on the application. For some application you are

may not be that much aware about the performance, you need very little computational

capability, but there are some applications where performance is important. You need to

ensure that performance is assured. Power consumption, this is important. Most of the

systems we see today, they run on battery. They need to consume very low power. Well,

our mobile phone is a very classic example of an embedded system in that respect ok.

Flexibility, flexibility means flexibility says the ability to change the functionality of the

system. The system was initially designed for certain application. So, is it possible to

modify it, so that you can also use it for some other application. Well if that flexibility is

there, then possibly for the second development your total cost would be much less,

designed cost ok. So, flexibility is also an issue that needs to be considered.

(Refer Slide Time: 07:57)

Maintainability, maintainability says that well I have already purchased an embedded

system as part of a larger system. Let us say I have purchased an air conditioning

machine. There is an there is an embedded system inside. Tomorrow the company says

that well we have come up with a better AC machine which has a Bluetooth interface,

which can interface with your mobile phones and computers and laptops. So, you can

control the AC machine even from your mobile phone, even from your laptops by

installing some apps.

So, is it possible for the older system to adapt to this new technology? Can you modify

this design so that this added functionality can be incorporated. This is what we mean by

maintainability. But of course, maintainability is possible only to a limited extent. Just

for the example I sited for having Bluetooth you need to have a Bluetooth interface right.

So, if it is not there in the first place, you cannot have Bluetooth ok.

Then time to prototype. How much time is required to build the first working version of

the system that is called a prototype. How much time is required to have the first version

ready so that you can test. And after the prototyping is done, time-to-market. How much

time it is required to build a finished product which can be sold in the market? Well,

prototyping and finished products are two entirely different things. Finished products

have to have durability, finishing, quality everything in place right. And of course, safety

is an important issue for many applications. You will have to be sure whether there are

any adverse effects on the environment or not because of use of that system ok. And

there can be many more such things I have only listed a few of them right ok.

(Refer Slide Time: 10:15)

Talking about design tradeoffs, this we have already mentioned earlier that there can be

several design requirements which are mutually conflicting. Here in this diagram, I am

showing four such matrix, power consumption, performance, non recurring expenditure,

and size. Now, these four can be mutually conflicting if you pull one the others will be

pulled in the reverse direction, means if you want to improve one maybe the others might

get degraded. So, you will have to take a holistic view. This is the task of the designer.

You cannot improve everything at once.

Like for example, the very slim laptops that are being built. Well you do not expect that

those laptops will become powerful in all respects, no, to make it slim somewhere there

is some compromise which has been made. These are examples of design tradeoffs ok.

So, this is something which you have to keep in mind.

(Refer Slide Time: 11:32)

And another important thing is that talking about design tradeoffs. Well, for embedded

systems you need a different kind of trained professionals. Well, you think about the

conventional computing days or traditional computing environment, where you have a

set of engineers, who developed the hardware who developed the processes like Pentium

processors is developed by in developed by Intel by a set of highly qualified hardware

engineers. There are some other groups who develop software for those computer system

that use those chips.

For example, in Microsoft there are some software engineers who developed the

operating system, who develop utilities like Microsoft Office and so on. So, there are

hardware experts, there are software experts. Their role is more or less independent of

each other. The hardware expert need not know software very well and software experts

need only know very little about the hardware. But now when you are designing an

embedded system, you are talking about a very small system where both hardware and

software will be there. And talking about the design trade off, you will have to play with

both of them.

So, now you need to have the expertise of knowing the hardware, how to use it and also

software how to program it in an efficient way. So, both hardware and software expertise

are required this is what I wanted to say here. Now, you may need expertise in harder to

identify what kind of coprocessors or IO interfaces you will be requiring for a certain

applications, because you may have several choices. There can be some analog ports,

digital ports, pulse width modulation ports, but which of them will be best for a certain

application? So, unless you are an hardware expert, you really cannot take a good

decision here ok.

Similarly, you also need to have expertise in software, because you need to decide which

parts of the implementation you need to implement in software, and which part is already

implemented by some hardware interface or can be implemented by some hardware

interface. So, you talk now about something called hardware software co design means

you are designing both hardware and software subsystems together. Like it is something

like this, you have a large system to be designed.

Now, you will have to decide that well I make a demarcation, well one of that part will

be implemented in software, this will be running as a program on a microcontroller and

the other part will be implemented by some specialized hardware circuit. So, where this

boundary will be this is a matter of design you can say trade off, the designer will decide

how to shift this dotted line, so that desired performance and other criteria are satisfied in

the best possible way all right.

(Refer Slide Time: 15:29)

Now, there is an important thing here, time to market design metric. Now, let us try to

explain this, what this mean. See a company whenever it manufactures some products

the ultimate goal will be to generate some profit out of it. So, marketing is the most

important issue for any company. The quality of the product becomes secondary.

Sometimes many companies they compromise on the quality of product in order to bring

the product to the market earlier, so that they can reap greater profit out of it. Time to

market is a very important or crucial design metric.

As it said must be strictly followed to make a product commercially viable. If you delay

in the launch of a product, you may incur a big loss. Maybe some of your competitors

already have hit the market with a similar product, and people will buy naturally from

them and not from you ok. And this requires very careful market study and analysis.

Now, this we are illustrating with a diagram like this as I showed here. Here the x-axis

shows the time and y-axis shows the sales typically.

Suppose your origin indicates the point where you are expected or you were expected to

bring the product in the market. So, what happens when a product comes to the market,

well the users or the customers also need some time to learn about the product. So, the

sale increases slowly over time, like you see it increases slowly over time this green line.

And there will be a point where this sale will saturate and beyond that point again this

sail will start dropping down. And there will be a point where the product will become

obsolete no one is buying it anymore. This is a typical curve, sale versus time.

And suppose there is a delay in the product launch. So, instead of this curve, you are now

following this inner curve. There was an initial delay. So, you see the curve will be

similar again, but the peak the maximum sale can that you can achieve is becoming

much less. The total area under this curve will denote, your total revenue, how much

total sale you have been able to done sales versus time. The total area under the curve

will indicate your total sales over that period of time. So, this curve area under the curve

is defined as the market window. So, any delay can result in a drastic reduction in sales

ok.

Now, let us make a simple calculation with some approximation. Well the curve looks

like this, but to a first approximation we can assume that these are straight lines, you can

assume that this is straight line, this is also a straight line.

(Refer Slide Time: 19:10)

So, with that assumption let us try to estimate that how much loss were expected to incur

if there is a delay in entering the market. We considered a simplified revenue model, you

can modify it very easily to means whatever is more realistic in your specific case. Here

what we assume is that as this graph shows that the product life is 2 W. So, from 0 up to

2 W, this is your total product life. After 2 W, no one will be buying your product. And

let us assume that the maximum sell occurs in the middle of it, at point W the cell

becomes maximum that means, this point. Market rise and market fall as I had said we

approximate it by straight line that means we define a triangle a triangular structure.

And as I mentioned the total area under this triangle will determine the total revenue that

you can generate, the total sales ok. Now, if we have a triangle you know how to

measure the area of the triangle it becomes easier ok. Now, for delayed entry as I had

said in the previous diagram also, suppose there is a delay in the entry by this much. So,

now, your triangle starts from here at this point D, but it will again reach the peak at the

same point because depending on market dynamics beyond a certain point interest in that

product will starting will start to go down.

So, the fall will start happening at the same point W. So, from then again it will continue

up to 2 W beyond which there will be no interest in that product anymore, but your initial

delay is actually shifting the left edge or the left vertex of your triangle to the right, this

is what is happening right. So, there will be a difference in the area of the expected and

actual triangles. Like your actual triangle area will be only this much right, but your

expected area was the area of this whole triangle larger triangle. So, it is naturally much

less in this case because of the delayed launch ok.

(Refer Slide Time: 21:46)

Let us make a calculation. Well, we show that same plot on the left. Well, we know that

the area of a triangle is defined as half into base into height, half base into altitude. So,

for the on time case, that means, the larger triangle area will be half into base is 2 W, and

height is W let us assume this is an equilateral triangle, it is rising at 45 degree slope, let

us assume. So, height let us assume this is also W the height is also W o so, 2 W into W.

So, this becomes how much W square, W square.

Now, for the delayed case your base becomes 2 W minus D, this becomes 2 W minus D.

And your height also because of this delay this will become W minus D there will be a

delay. So, this calculation can be done this is parallel to it. So, there will be a decrease by

this factor. Now, if we want to estimate what is the revenue loss because of this you see

initially it was W square right, but in the modified version it becomes 2 W minus D

multiplied by W minus D divided by 2.

So, if you just calculate how much is this it will be twice W square. So, if you make this

calculation to be twice W square, then minus 2 W D and 1 W D, it will become plus 3 W

D, and D square, there will be a minus D square. So, these two will be cancelling out. So,

what you get is if you take D common, 3 W minus D by 2, this is your decrease in the

total revenue.

But if you want to calculate the percentage revenue loss you will have to divide it by

your original total revenue which was W square. So, multiplied by 100, this is your

percentage revenue loss, that means, revenue loss divided by your initial total revenue

multiplied by 100 right. So, in this way you can make a simple calculation and see that

for various values of D how much revenue loss you are incurring.

Just a simple calculation as an example, suppose your window size is 1 year - 52 weeks 2

years sorry 52 weeks is 1 year. And your if your delay is 4 weeks, let us say you are 1

month delayed if you substitute these values here your loss becomes 22 percent. But if

you are delayed by 10 weeks, your loss becomes as large as 50 percent ok. So, you see

that your loss increases very rapidly, and this delay becomes very costly for the financial

viability of a product right. This is a very important consideration.

(Refer Slide Time: 25:28)

Now, talking about the NRE Non Recurring Engineering and unit cost well if C NRE let

us say denotes the non recurring engineering cost, and C unit denotes the unit cost. Then

for manufacturing N units of the product the total cost will be non recurring cost this is

this is a onetime cost plus number of product multiplied by unit cost. Now, if you try to

calculate how much cost effectively means we have incurred for every unit, that means,

per unit cost, you divide the total cost by the number of you divided by N. So, it becomes

C NRE divided by N plus unit this is your per unit cost right.

So, an example if your non recurring engineering cost is rupees 5 lakhs let us say and

unit cost is 5000, then for manufacturing 100 units the total cost if you calculate using

this formula, it becomes rupees 10 lakhs. So, per unit cost will be C NRE divided by N

plus C unit C NRE divided by N plus C unit 10000, like this you can calculate right.

(Refer Slide Time: 27:04)

Just a very simple calculation I am just illustrating. Suppose you have several choices

like to manufacture a product you see that there are several different kind of equipments

you can purchase to manufacture them. And the initial cost of the equipments are also

quite different. Suppose you have three choices for the first choice the non-recurring

costs is 20000, second one 4 lakhs, third one 20 lakhs. And the unit cost for the three

cases are coming to this, this and this.

So, what do you can do you can calculate the per unit cost for some particular value of n

well I leave it as an exercise for you. Suppose I tell I want to manufacture 1000 units of

product, then using this formula you calculate the per unit cost for choice A, choice B,

and choice C and C which one of them is better. Not only that you will also have to

consider the time to market cost, because may be means one choice is good in terms of

cost, but you are taking a long time to start that machine, because installing, training and

just using that machine it is requiring much more time that also you also have to need to

consider. That not only the cost, but also the time to market ok.

(Refer Slide Time: 28:46)

And in addition you have some performance design metrics that also you need to

consider. Normally, these are traditionally used for evaluating processor performances

CPU processors. So, the same consideration you can also use or try to use for an

embedded system, but there are a few things you need to remember. This performance

design matrix tell you that which processor is faster than the other in some respect. These

are quite widely used, but it is also true that if you do not understand the meaning of

these metrics they can be the most misleading.

Most of the computer manufacturers they try to mislead the customers by quoting some

figures with respect to benchmarking and speeds which if you dig deeper and try to

understand, you will actually feel that well for your particular environment those

numbers make no sense. You may require to know something else, which will be best

suited for your application ok. So, you must be very careful in the evaluation this is what

I wanted to say.

Some of the typical measures which are used again these are not good measures. Clock

frequency, well you see someone is saying 1 gigahertz, 2 gigahertz, 3 gigahertz does

faster clock frequency means a faster computer not necessarily. There are many other

things which determine the actual performance of a computer system ok. There are some

measures like million instructions per second – MIPS; this also does not mean anything.

What kind of instructions are they simple instructions or complex instructions. Your

MIPS figure will vary drastically among them. So, it does not give any fair measure.

Only with respect to some specific application, you should be able to measure that how

much time it is taking to run my application that is something which would be most you

can say beneficial in your assessment ok.

Latency response time you give an input after how much time you are getting back the

output this can be of course, one good measure for many real time applications.

Throughput, throughput again may not be that good for an embedded system.

Throughput means number of computations that can be carried out per unit time.

Normally, we talk about throughput for conventional computer systems, but for an

embedded system which is meant for a very specific application, we normally do not talk

about throughput.

And if you have several design alternatives, you should have a way to compare their

speeds, speeds of operations ok. So, let me repeat these assessments are not easy. The

best way is to run the application you want to run on a real computing machine and see

how much time it takes. Whatever the manufacturer says you take them with a pinch of

salt, do not trust them 100 percent ok, all right.

So, with this we come to the end of this lecture where we talked about some of the

design metrics that are relevant in embedded system design and some of the implications

with respect to the cost and revenue.

Thank you.

