
Embedded System Design with ARM
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 14
Analog to Digital Conversion (Part II)

We continue with the discussion on Analog to Digital Conversion. This is the second part

of the lecture analog to digital converter part 2.

(Refer Slide Time: 00:27)

So, in this lecture we shall be first talking about another kind of ad converter, which is

similar to counter type or tracking type ad converter that we discuss in the last lecture,

but is much more efficient in terms of the conversion time. And we shall be talking about

what kind of ad conversion facilities are there in the ARM development board that we

shall be using, that we have seen that STM32 volt.

 (Refer Slide Time: 01:03)

So, this method of AD conversion that we shall be discussing now is called successive

approximation type AD converter. Now the first thing you see what I have mentioned

here is that the principle of operation is analogous or similar to binary search. For those

of you who are familiar with programming have some basic knowledge and

understanding of data structure, you may have come across the binary search algorithm.

But let me tell you what binary search is for the sake of those who does not know it. Just

assume that I have a list of numbers I have a list of numbers which are stored let us say

in an array and this numbers are sorted in either ascending or descending order; they are

already sorted.

Now, I want to search for a number, I want to find out whether a number let us say 45 is

present or not. Well if the if the array was not sorted, then I would have to search it from

the beginning to the end. I have to look at all the elements, but because it is sorted I can

adapt a very intelligent strategy what kind of strategy. Well I can start with the middle of

the array I compare whether the middle element is less than or greater than the element I

want to search. If I find the middle element is less than that which means my element

must be on the right hand side or if it is other way around, then it must be on the left

hand side.

So, you see in one comparison I have reduced the size of the list to half. I repeat the

process for the half that I have selected. Suppose it is in the right half I again probe in the

middle depending on the probe either I have to see in the left half or the right half

suppose I am in the left half I repeat this process.

So, let us say let us take an example suppose I have 128 numbers in the array. So, I start

with 128 numbers. Well after one search or one comparison I reduce the list to half it

becomes 64. After another search it becomes 32, after another search it becomes 16 like

this 8 4 2 and 1. Finally, when there is only one element, then I can tell that whether it is

there or not there. You see 1 2 3 4 5 6 7, well 1 you can ignore 1 is the trivial case. So, 7

comparisons are required. So, what is 7? 7 is nothing, but log 128 to the base 2. Well we

normally talk about the ceiling smallest integer greater than that.

Now, this successive approximation technique is like implementing binary search in

hardware in performing the AD conversion.

(Refer Slide Time: 04:33)

Let us see how it does. This is what we have already said. Now, you see for 128 I say

that it will need log 128 right. So, for 2 to the power n if there are 2 to the power n

number of elements, I want to search I will be needing log 2 to the power n to the base 2

which is nothing, but how much is that log 2 to the power n to the base 2. This is

nothing, but n; I need n number of steps. So, if I can implement this I need only n clock

pulses and not 2 to the power n clock pulses.

(Refer Slide Time: 05:17)

So, how do we do? We use something called a successive approximation register instead

of a counter, we do not use a counter we use a special kind of a register called a

successive approximation register. What we do? Let us say for 4 bit ad conversion; it is

easier to explain.

Let us say we initialize this register with 1 0 0 0 see in 4 bits, we can have from 0 to 15.

This 1 0 0 0 means what in decimal 8. So, 8 is approximately the middle of that range 0

to 15; 8 is the middle. So, I start with the middle point. So, I compare whether it is less or

greater. So, 1 0 0 0 is 8 right is 8, then it can be less it can be greater. Suppose I say that

the input is smaller then it will be on the left half 0 to 7. What is the middle point of 0 to

7? 4. So, what is 4? 4 is 0 1 0 0 and on the right hand side if it is greater, I have to go on

the right hand side; that means, 9 to 15 middle point of it is how much 12, 12 is 1 1 0 0.

So, what we are actually doing? We started with one 0 0 0. So, if it is less than this 1 is

made 0 and the next bit is made 1, but if it is the other way around this 1 remains 1, I do

not change, but the second bit only I am making 1. This is what we are doing repeatedly

and this emulates binary search ok. This is the role of the successive approximation

register.

(Refer Slide Time: 07:07)

You see this diagram that I am showing on the left hand side; this exactly is doing what I

just now told with the example. So, in the successive approximation register we start

with 1 0 0 0, we compare with the analog input voltage whether it is less than or greater

than.

So, if the if the input is less than that ADC output or the SAR output; then I go here it is

less than, it is greater than less than. I make this bit as 0 I make the next bit one 0 1 0 0.

If it is other way around, I make it 1 1 0 0 and I repeat this process, how? You see here

also I again make a check whether it is less than a sorry less than or greater than. I mean

if it is less than in the last bit which I had made 1, I make it 0 and the next bit I set to 1.

But on the other side if it is a greater than this bits, I am not changing the next bit I am

changing to 1 and this process I am repeating always I am looking at the next bit either

the immediate bit, I am changing it back to 0 and setting the next bit to 1 or I am not

disturbing the present bit just changing the next bit to 1.

So, in this way I make 1 comparison, 2 comparison, 3 comparison and 4 comparison and

I get finally, my result whatever will be my output of the ad converter right. So, here

only 4 comparison steps are required for a 4 bit converter.

(Refer Slide Time: 08:57)

Block diagram wise this is how a successive approximation AD converter looks like.

There is still a comparator in a DA converter very similar to a tracking type ADC just the

up down counter is replaced by a successive approximation register and this implements

actually the logic, which we mentioned depending on whether the output of the

comparator is 0 or 1 it takes a decision.

And whenever you want to start the process of conversion, there are typically two

interfaces, start of conversion end of conversion. So, if you apply a pulse in start of

conversion the conversion will start and internally there will be 8 clock pulse. Suppose

depend suppose you are using an n bit converter. So, you need a DA converter of n bits

after n clock pulses; this end of conversion signal will be made high. So, any device

outside will know that my AD conversion is over. Now I can read the value of D this is

how it works simple in concept, but very flexible and very fast this requires only n

number of clock pulses.

(Refer Slide Time: 10:21)

Just one small example is shown here. This example is for a 3 bit converter. See as this

binary search goes on, how the output of the DA converter changes? You see you start

with the middle. This is my middle point then you either go here or here let us say I have

to go up. So, this is my next point. Next step you either go up here or here let us say you

go here like this. You gradually you start with the middle point, then maybe you will be

going here, then we will be going here then we will be going like this; you will be

converging to the point.

This is a small example that I have shown here for let us say the input corresponds to this

1 0 1. So, it gets converged to that point, but if you look at the wave output waveform of

the DA converter output so, what is the waveform? The waveform will look like this

fine.

(Refer Slide Time: 11:39)

Now, talking about the arm microcontrollers, what kind of ad conversion facilities are

there in the arm microcontroller? You see DA conversion is easy, you only need some

resistances to make a DA converter, but ad conversion is more difficult. So, you need to

have some special circuitry to do AD converter.

Let us look at some of the older generations of ARM. First the ARM 7 was one of the

previous generation ARM processors microcontrollers. There was a built in 10 bit

successive approximation AD converter. They are all implemented using successive

approximation technique because it is efficient, because it requires less amount of

hardware.

Now, since it is a 10 bit converter just an example, if I connect a 3.3 volt supply to the

difference voltage, then this step size will be full scale voltage divided by 2 to the power

10 minus 1. If you make a calculation this comes to 3.23 milli volt. This actual

determines to what level of accuracy you can make the measurement. This resolution is a

measure of accuracy with an accuracy of 3.23 millivolt, I can make the measurement

when I am reading some analog input and doing some processing, fine.

Now, just inside this processor some specific detail is that there were two such ADC

modules, they are called ADC 0 and ADC 1. And this ADC 0 has 6 channels ADC 1 had

8 channels, 6 channel means you could have connected 6 inputs for conversion 8 channel

means you could have connected 8 inputs and the frequency of the clock was maximum

4.5 megahertz. This was the maximum clock frequency that are supported.

(Refer Slide Time: 13:57)

Now, let us see how this channels work. This channels work like this, you see I am first

explaining this. Here you have an ad converter and this block that I am showing this is an

analog multiplexer. So, you know what is the digital multiplexer is if there are multiple

inputs so, one of the inputs are selected based on the select lines. So, analog multiplexer

is similar the difference is that the inputs are analog voltages; one of the input will be

selected at the output depending on what you are applying at the digital select input lines.

Now, this ADC 0 had said they had 6 number of analog input channels. So, by

appropriately selecting it, you could have selected one of them for conversion. Multiple

of them you can use simultaneously, but you will have to switch from one to other at a

very fast rate; you convert one channel then converts second channel, then convert third

channel. Again come back to the first.

Now, this you can possibly use again because of that Nyquist theorem I talked about.

Well your AD converter may be working at 1 megahertz speed, but you may not be

requiring that kind of a sampling rate depending on your input waveform characteristic

may be your sampling rate will be 1 kilohertz only. So, multiple channels you can

multiplex on the same AD converter and use them simultaneously. So, here there are 2

such channels ADC 0 and 1 supporting 6 and 8 channels respectively right.

And after AD conversion was completed and interrupt signal was generated ok. This is

how it worked and there was a control register which has to be initialized to program that

what you want, how you want all details have to be mentioned. This was what was there

in ARM 7.

(Refer Slide Time: 16:07)

Now, coming to the boat, that we would be using that STM32 which is based on the

ARM Cortex -M4 microcontroller. Let us say what is there inside that. Now in this board

there are 3 built in 12 bit AD converters and each of them can support up to 19 channels;

that means, the analog multiplexer has so many inputs right. So, for 12 bit if your

reference is 3.3 volt as you can see, your step size will be much more smaller. So, your

accuracy will be much more higher 0.8 milli volts that will be your accuracy.

There are 16 external channels which are connected to the input output pins and out of

the 16 channels 6 of them are available on the Arduino connector pins I shall be showing

them these are called a 0 to a 5. And in addition there are 3 internal channels which are

meant for checking the health of the system the system can check itself. These 3 internal

channels are connected to the voltage of the battery if the board is running on battery you

can also read what is the battery voltage, then temperature sensor there is a built in

temperature sensor in some of the boards. You can read the temperature of the board also

and also you can read, what is the current reference voltage. So, all these things are

internal things you can also monitor and read those values; these are called internal

channels.

(Refer Slide Time: 17:59)

Now, coming back to this board again, you see in this Arduino connector look at this

part. Here A 0 A1 A 2 A 3 A 4 A 5, the six analog input lines are available here, but more

number of analog input pins are supported if you want more you will have to access

them from these extension pins. So, in this extension pins STM32 extension pins, you

have access to all the signal pins, but here you have access to only the arduino

compatible connector pins.

So, when you are requiring AD converter well let us say certainly in the experiments that

we shall be showing, we shall not be using too many channels. We can directly

connected to the arduino input connectors also. In that case those pin numbers we can

refer by A 0 A1 A 2 A3 A 4, we can also give those names or if you can use this pin

number let us say this particular pin this particular pin number; this will be 1 2 3 4 5 6 7

8 9 10 11 12. We will be calling them as P 12.

And so, you can also refer to that pin as P 12. So, you can either call them by name

which is there in the Arduino 1 or you can also call them by the pin number or also port

number. I showed that complex diagram; the pin nomenclature ok. There every pin can

be accessed by using different names. So, when you write a program when writing a

program, you can use any of those names as you want, fine.

So, with this we come to the end of this discussion on AD conversion. Earlier we had

looked at DA conversion. Now in the next lectures, we shall be talking about some of the

common sensors and actuators that are very important in embedded system applications

and many of them we shall be actually demonstrating through the hands on sessions. So,

before using them, it is always good to know what the sensors are, how they work and

some basic idea as to how they can be interfaced with the microcontroller. So, these

discussions we shall be continuing in our next lectures.

Thank you.

