
Discrete Structures
Prof. Dipanwita Roychoudhury

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture – 32
Recurrence Relations (Contd.)

So, we are discussing about the Recurrence Relation and mainly the how to design the

recurrence relation. Now, if we remember that when we have read the recursive

algorithm then some examples, we have seen mainly the Fibonacci sequence that if we

write the recursive algorithm to compute the nth Fibonacci number, we have seen that the

recursive algorithm is not efficient because, it took much more number of additions than

the iterative algorithm.

But there were many examples even the recursive algorithm is not efficient, then also we

use recursive algorithm or recursion. Since, there are many problems where we can very

simple way, we can give a solution procedure; that means, we can give algorithm; that

means, the recursive algorithm is much easier to solve the problem. And we will see

today this type of problems. So, first we read our tower of Hanoi problems.

(Refer Slide Time: 01:59)

So again, we continue the recurrence relations and first we see some of the problems

where, how we can frame the recurrence relation then one such example is this is the

tower of Hanoi. So, tower of Hanoi is a puzzle first, we explain the problem. So, it is a

puzzle consisting of 3 pegs mounted on import. And n number of disks of different sizes

of sizes with holes in the center.

Now, it is assumed there is some restriction of placing the disks on the peg, that what is

that restriction that it is assumed that if a disk is on a peg, only a disk with smaller

diameter can lie can be placed on it on the top of the previous disk; that means, always

the smaller disk will be on the top. Now the problem is to transfer the disks that are

stacked on one peg to another peg by moving one disk at a time and we can use the third

disk for this purpose ok. So, this is my the problem is this. So, first we will frame a

recurrence relation for this then say this is one puzzle and solving this puzzle is very

difficult if when n is very large.

(Refer Slide Time: 07:33)

So, if I again explain properly, say I have 3 peg say, this is first peg second peg, third peg

and in the first peg the n number of disks are there. So, in this way I can draw you say, I

have to shift these all these disks from the problem is to shift or transfer all the disks to

from peg 1 to peg 3. And, we can use peg 2 and the restriction is I should tell the

restriction that always lower disks or smaller disk having disk with smaller diameter.

So, you can I can tell smaller disks, smaller disk will be on top even during the transfer,

we must follow this restriction. We must follow this restriction you see if I have only 1

peg, if I have only 1 peg then what I will do that on simply, I will say, I have only 1 peg

then simply, I will transfer this thing to peg 3. So, I need only 1 move ok. So, if I write

then number of moves, it is 1, but if I have even if I have to then also I have to first I

have to if.

(Refer Slide Time: 12:05)

Now, say I have say I have 3 pegs. So, I have to then first I remove the larger one 2 3

then the smaller one was the larger one here then this smaller one into 2 then the smaller

one from 2 to 3. So, I need 1 move then it is 2 move then it is 3. So, I have 1 move first

here 2 here 3 move. So now, when the number of disks are small numbers say 1 disk, 2

disk, 3 disk then in this way, we can shift that thing, we can transfer all the disks from

one peg to another. But, if n is a very large number then it is very difficult to write this

type of probe and if we want to write a program then it is very difficult to write that thing

then first thing is that how to solve or what will be the number of moves required, if all

the disk I want to shift from 1 to 3.

So, what will be the output? So, to get a solution for this type of problem actually

recursive approach is very easy to understand and to represent, what will be doing? So,

our approach should be that if I have n number of n number of disks and already we have

seen that form on disk, it is very easy when in greater than 1, we solve in 1 disk problem,

what is that thing as if the we will transfer the largest disk here.

So, I need 1 1 move for this and these remaining n minus 1 disks remaining n minus 1

disk, I give this number to shift. So, this is my 4 n minus 1 disk, I will give and then I

have for this, I have a larger disk. Here says, if I have a larger disk the and then I will

ship this n minus 1 disk to here. So, again this is some n minus 1 disk moved to here then

all n disk should be should are shifted from 1 to 3. So, here actually are we get giving yet

as if these are my these are my n minus 1 disk and this is my the largest disk that was at

the bottom of the peg 1. So, we solve n minus 1 disk towards here 1 and here 1.

So, twice and explicitly move 1 disk that is the largest disk. So, this will give me the

solution. So, what is a recursive approach that we know that if n equal to 1 for n equal n

equal to 1, I need only 1 move that already I have explained here, I need only 1 move

and our approach is it is a recursive way of solving or recursive algorithm that as if we

solve n minus 1. This problem twice that means, in my the largest is first moved to or

since at the top the first n minus 1 disks are moved from 1 to 2. Then the largest disk is

moved to 1 to 3 and the n minus disks are moved from 1 to 2 and the n minus 1 disks are

moved to 2 to 3 then we will be getting the solution that all n disks are moved from 1 to

3.

So, this is the our approach to solve the problem it is I think it is very much clear that if n

is very large even, if it is n is 10 then it is very difficult to move this type of thing rather

as if we assume that that when I have 10 number of disk as if the smaller number of this

say for 9, it is already solved; that means, we can move in this way we can do that thing.

So now, how we can give the recurrence relation for this problem? So, the recurrence

relation that just now what I told that we have to solve n minus 1, this problem to us. So,

the solution is if we represent let C n be the number of moves required to transfer n disks

from peg 1 to peg 3 using peg 2.

So now, we can write the way we have given the solution that C n is twice, we solved the

n minus 1 to C n minus 1; that means, and 1 explicit move, what is this 2 C n minus 1?

This 1 C n minus 1, you can write 1 C n minus 1 is the number of moves to transfer n

minus 1 disks from peg 1 to peg 2 and another C n minus 1 is number of moves to

transfer n minus 1 disks from peg 2 to peg 3. So, I can tell this is my 2 C n minus 1, I can

tell this is my 2 C n minus 1 and this 1, this 1 is for move this is my explicit move to

transfer the largest disk from peg 1 to peg 3. So, this is one rick this is my recurrence

relation for tower of Hanoi problem.

So, this is my recurrence relation. And it is very much clear that much easier way, we can

represent this thing then once I get this thing and since I know the initial conditions also

what are my initial conditions, what is my C 1, if I have only 1 peg? Number of moves

required is 1. So, C 1 is 1, now I can even I can get a explicit formula for this.

(Refer Slide Time: 24:53)

So, I know the recurrence relation C n is 2 C n minus 1 plus 1 with C 1 equal to 1 then I

can write 2 to C n minus 2 plus 1. So, plus 2 plus 1 then again this is to square C n minus

2 plus 2 plus 1 then it is 2 q C n minus 3 plus 2 square plus 2 plus 1. So, in this way if we

proceed then we will be getting 2 to the power n minus 1 C n minus n minus 1 plus 2 to

the power n minus 2 plus 2 square plus 2 plus 1, because when we are getting 2 cube it is

C n minus 3 and it is 2 square. So, it is I am putting as n minus 1. So, this becomes n

minus n minus 1.

So, this becomes 2 to the power n minus 1 C 1 plus 2 to the power n minus 2 up to 2

square plus 2 plus 1. So, this becomes since this is C 1 equal to 1. So, this is 2 to the

power n minus 1 plus 2 to the power n minus 2 plus 2 square plus 2 plus; that means, it is

I am getting that n number of terms and this we know the answer it is 2 to the power n

minus 1 by 2 minus 1. So, this is 2 to the power n minus 1, see we have started with the

recurrence relation. So, this is my just now, we got the recurrence relation of solving tor

of an eye problem, this is my recurrence relation and just if I continue iteratively then we

get the solution also and this is my explicit formula for the number of moves to transfer n

number of disks from one peg to another.

So, this is the solution for tower of Hanoi problem or you can write that this is my

solution of tower of Hanoi problem and this is a solution. So, solution is one that it must

satisfy the sequences; that means, if n equal to 1, if I get n equal to 1; that means, only 1

peg then 2 to the power n minus 1 becomes 2 to the power 1 minus 1 that is 1. So, we

know that from peg 1 to peg 3 only 1 move is required for n equal to 1, it is only 1 move,

say for n equal to 2 then 2 to the power 2 minus 1 is 3 move, we have already seen that if

it is a 2, if we remember that so if I have 2 peg.

So 1, first the largest will go here 1 smallest will be go here and then again smallest will

go here. So, I have I have 3 moves. So, it satisfies the relation for any number of pegs.

So, these will give me the solution this is my solution of tower of Hanoi problem and

what you see that it means if I now take the recursive approach or the recursive

algorithm then actually, it is much easier to handle this type of problem.

(Refer Slide Time: 30:08)

Now, we take another example. Let I have, let there be n numbers then how many ways

the problem is that how many ways and we have to first write the problem we have n

numbers. And, we have to compute the product of this n numbers see numbers are a 0, a

1, a 2 say n minus 1 and then I take I can take n plus 1 number and I can put here n. Now

at the product at a time product is done for 2 numbers, say a i and a i plus 1.

Now the problem is problem that how many ways to parenthesize the product of n plus 1

numbers, we try to explain or with some example let there are that there will be 5

numbers, I will get phone numbers then it will be easier to give that thing numbers say a

0, a 1, a 2, a 3. Now, we can parenthesize to compute the product like I can parenthesize

a 0, a 1, then a 2 then a 3 then I can do a 0, a 1, a 2 then a 3, I can take a 0 a 1 a 2 a 3 and

then I take the product I can take a 0 then a 1 then a 2, a 3 or I can take a 0, a 1, a 2 then

a 3 first and then.

So, these are the 5 ways, I can the 5 ways we can parenthesize to compute the product,

when we have phone numbers a 0, a 1, a 2, a three. So, my problem is that how many

ways to parenthesize the product of n plus 1 numbers. Now, if we observe that the

product or the parenthesising the numbers, when it is only 4 then we see that as if we

take that we are solving the problems with a lesser numbers then it is much easier to do

their thing, say we take this thing is 0 a 1 a 2.

So, as if a 3 is the number 1 number left and this is that when there are 3 numbers is 0 a 1

into. So, we first complete the product of this 3; that means, it gives that if 3 numbers are

there instead of 4 then it gives that how many ways, we can parenthesize and then we

add 1.

(Refer Slide Time: 38:13)

So, if in this way, we can we can do then my solution will be I can write my solution. So,

let C n be the number of ways we can parenthesize to compute the product of n plus 1

numbers ok. And just now, we have seen that we have if it is C3 like one example, we

have taken that if it is C3 equal to 5 for n equal to 3. So, if some recursive approach, we

apply then we can write that we can write C n is C 0 C n minus 1 as if only one element,

we have taken and then C 1 C n minus 2 C 2 C n minus 3 then the reverse order n minus

2 C 1 C n minus 1 C 0. Again, we just see the way we have done is 0 a 1, a 2, a 3 and this

is the way we have taken it a 0, a 1, a 2, a 3 the reverse thing. Similarly, here it is reverse

and this is only one that is 0 1 into a 3.

So, I can write this thing as sum of K equal to 0 to n minus 1 C K and C n minus k minus

1. So, this gives a recurrence relation. So, already we have seen that for n equal to 3 that

C3 equal to 5. So, we can put here that n equal to 2. So, what is my C 3? So, my C3 is K

equal to 0 to 3 minus 1 is C K C n minus 1 is C2. So, this gives me that is C 0 C n minus

1 and then keep save me, the 10 minus of n minus 1 n minus k minus 1 I write. So, first

thing is that K equal to 0 and n equal to 2. So, this becomes 2 minus k minus 1 C 0 C 1

plus C 1 C 0, the C 2 C 0 C 1 plus C 1 C 2. So, we can get in this way, we can actually

satisfy that we can that our solution must satisfy the recurrence relation.

(Refer Slide Time: 45:05)

So, what we have read in this lecture that we see that some of the problems like tower of

Hanoi like tower of Hanoi problem or this parenthesizing numbers to get the product,

that recursive approach is efficient. In that sense that, recursive approach to get or to

solve the problem is easy to understand and even for it is much difficult to write

algorithm iteratively.

So, we have seen the that some examples particularly tower of Hanoi problem we have

seen. An approaches first will apply some recursive our approach, then we find out the

recurrence relation, find out a recurrence relation. We have seen that how to get the

recurrence relation and next we will be for some simple examples, we have shown that

how to get the explicit formula, which is nothing, but the solution of the recurrence

relation.

So, the next is to get the recurrence relation or get an explicit formula for the recurrence

relation which is nothing, but the which is the actually the solution of the recurrence

relation. So now, we learnt that how to solve the recurrence relation. So, in this class we

have read how to frame or how to design the recurrence relation for a given problem.

And to get the solution, we will we have to learn that the different techniques that is used

to solve the recurrence relation.

