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Lecture — 29
Recursion (Contd.)

We have learned the Recursion and Recursion we have defined it as a process of defining
an object with itself. We have learned the function, sequences and sets and structures
how they have recursively defined. Now, today we will read the recursive algorithm

which is a very important and elegant way to solve problems.
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So, you can define that recursive algorithm is an algorithm that solves a problem by
reducing to an instance of the same problem with smaller inputs. So, we defined a
recursive algorithm; it is an algorithm that solves the problem by reducing it to an
instance of the same problem with the smaller inputs. Now, if we remember we have
defined the recursive function a function. If we remember recursive function that is a
function that invokes itself; now very simple way we can tell the recursive algorithm is

an algorithm that contents a recursive function.

So, since already we know the recursive function and recursive function that invokes
itself. So, an algorithm that contains a recursive function we will call that is a or in this

way we can frame a recursive algorithm. So, what is the approach to write or to frame a



recursive algorithm? So, approach is so to frame or how to frame or to design a recursive
algorithm. Since, just now I mentioned that recursive algorithm contains a recursive
function. And, since we know now how to form a recursive function then automatically

that will the algorithm will call itself.

So, we can define in this way that a problem in this class is decomposed into a number of
subproblems. It can be one or more than 1 sub problems of the sub the nature of
subproblems are the same as that of the original problem. So, I can write into a number
of some sub problems of the same type. Then each subproblem is again decomposed into
a number of simple sub problems until it gives a or it yields a sub problem that can be
solved in straightforward way. So, the approach is nothing, but divide and conquer

method.
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So, I can tell that recursive algorithm solves the problem in divide and conquer method.
So, that approaches the divide and conquer method that one problem it divides into a
subproblem, but nature is same it is of same type. And, again each subproblem another
same type of subproblems is and until we get a sub problem in such that as, if it matches
with a given condition or it can state straightforward way I can get the solution. Then we
add all the solutions of the subproblems then finally, we the solution of the subproblems

are combined to get the solution of the original problems.



So, now we describe the method of recursive algorithm design by with a number of
simple problems. So, first we see our one example of one example one very simple
example of recursive algorithm, that how to compute the factorial of an positive integer.
Example is computing of compute the factorial of positive integer. Now, if we limit
remember the recursive function then how to compute the factorial? All of you know the
definition of factorial that we know the definition that in factorial is n into n minus 1
factorial. Since, we know the definition of factorial that it is n into n minus 1 n minus 2;

the product of all integers up to 1.

So, this is same as it is up to n minus 1 n minus 2 then it is nothing but, the n minus 1
factorial. Now, if we see the nature that when we are computing the factorial n that n
factorial is n into n minus 1. That means, if I write a function then as if this function with
smaller inputs because, n minus 1 is less than n with smaller inputs I can frame a
function. And, recursive algorithm contains this type of function a recursive function or
algorithm if we write that contains this recursive function that will form a recursive

algorithm.
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So, how we use that algorithm, if we write the factorial you write a factorial or
computation computing factorial of n. So, we can write my input is n and n is an integer

greater than equal to 0 and output is n factorial. So now, I can write if I give the function



name the factorial n then, if n equal to 0 then return 1 else return n into factorial n minus

1.

So, we see that here the this is the function is factorial function is factorial n and we have
written when we are computing, that thing the function n into factorial n minus 1 which
is of same type with smaller inputs; that means, n minus 1 is less than n. So, it satisfies
the definition of the algorithm that has it the same the original problem is decomposed
into a subproblem with smaller imports. So, this is a simple example of computing

factorial n which is a recursive algorithm.
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Now, we see another example say we compute power. So, we compute a to the power n,
where a is non-zero real number and n is a non-negative integer. Now, we know the a to
the power 0 is 1 we know. So, when n equal to 0 it will return 1. So, for n equal to 0 it
will because 0 equal to 1, for other values of n I can write a to the power n in to a to the

power n minus 1. So, as if when we will compute we want to compute a to the power n.

It can be decomposed into a to the power n minus 1; that means, if I write a function to
computer to the power n then the similar function with inputs as n minus 1 a n minus 1;
that means, that since n minus 1 is smaller than it. So, with smaller inputs I can frame
another function of same type. So, one algorithm that contains a recursive function and it
will be recursive algorithm. So, very simple way if I can write, I give the name that

function is compute power.



So, it is a give compute power and my inputs are a n, where a is non-zero real numbers
and n is non-negative integer. Now, I can write that if n equal to 0 then compute power |
can write returning, I can write compute power a n equal to 1 else compute power a n
equal to a into compute power a n minus 1 that is a function with smaller inputs I can

write. So, this is a recursive algorithm.
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Now, how we can prove that it is giving a correct result; that means, proving recursive
algorithm correct. Now, if we remember that when we have raised the recursive function,
the way we have proved that the recursive function gives a correct result and it is using
the mathematical induction. Now, if again if we see that the two simple examples that if
n equal to 0 return 1. So, as if this is my terminating condition; that means, there is there
is some condition that what the algorithm will stop otherwise it is return in into factorial

n minus 1.

So, I can think that this is my basis step n equal to 0 then return 1; that means, for n equal
to 0 it gives some value. And, otherwise that [ am writing a recursive step which actually
contains my recursive function. If I see the next example again it is same that if n equal
to 0 it return 1. Because, all of we know that that a to the power a to the power 0 equal to
1. So, this is equivalent to my basis step because, for n equal to 0 it is giving 1. And, then

computing power that is a recursive step and again this step contains the function and it



is a recursive function because it is compute power n. And, then it is decomposed into a

function which required the inputs r a n minus 1 and my n minus 1 is smaller than n.

So, those the same way we have proved the recursive function gives correct result, the
same way we can tell that the we can tell that we can prove the recursive algorithm
correct. So, here also there is some basis step just now what we have seen. Here also
there is some basis step which is actually for some primitive values of input or primitive
values of input results the output. And, in respect of recursive algorithm we can tell this
is nothing, but my terminating condition; that means, when the function can be computed

straightforward way when we stop.

So, this is my terminating condition. Then with what is my inductive step or recursive
step? So, this is my recursive step or inductive step. It is that the algorithmic next step
that contains the recursive function. So, for the previous example of computing power |
can tell my basis step that for n equal to 0 ok. So, I can write for compute power n my
basis step is basis step is n equal to 0 a to the power 0 equal to 1. And, what we have
written that if n equal to equal to 0 then return 1 or compute return 1 or compute power a
0 equal to 1 or I can write if n equal to equal to O return 1. So, this is my return 1. This is

my terminating condition.

(Refer Slide Time: 27:47)

b 2 e

Puis S
Fr-'niFﬁ. o df fepb g vealkc n&r,d—
— eriul-? tudibon
R St/
T chebive T Aribine shp b b b yienin gmy.,
Fr Coupabe P (aw) Py

= ‘- ¥ we =0 FY lj \
L B N
Rrursia S":[ C“H‘ Peliur (f") = Gx {.nfq.h,m" L}.h-g

i P

Wi o i o
i  cB@o ~

And what is my recursive step? My recursive step is that compute power a n is a into

compute power a n minus 1.
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Now, if I use mathematical induction so, if we assume for 1 equal to n the result is true;
that means, here result is true. That means, that is the recursive step recursive step gives
the correct result gives the correct result; that means, my compute power a n gives a to
the power n this is my correct result. So, for 1 equal to n plus 1 for 1 equal to n plus 1
using mathematical induction this compute power a n plus 1 is a into compute power
according to that algorithm this becomes a n. Now, for using my mathematical induction

this is equal to a to the power n since, the result is true we have assumed.

So, this becomes into a to the power n and this becomes a to the power n plus 1. So, for
compute power a n plus 1 this is also a to the power n plus 1 and this is result is correct.
So, here also we see that recursive algorithm also we can prove using mathematical
induction. This is very obvious because, the way we have defined the recursive algorithm
that algorithm contents a recursive function and the recursive function proving we have
used that mathematical induction. So, if we can prove in this way the same thing. Now,
another very popular example or of computing Greatest Common Divisor the GCD using

Recursive.
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We can write recursive algorithm, that I gave my third example as the computing a
compute greatest common divisor; normally called gcd of two integers a and b and a less
than b. Now, we can write the compute gcd function as the compute ged a n a b, just if
we write that is if a equal to equal to 0. Then compute gcd a b equal to b else the

recursive step compute gcd a b equal to compute gcd b module a and a.

So, this is nothing but all using the computing ged using Euclidean all algorithm. So,
computing gcd using Euclidean algorithm, see if I take an example of say am I want to
compute gcd 5 and 8 5 less than 8. So, I can write gcd 5 8, I can write gcd 8 module 5 5.
This becomes gcd 3 5 ged 3 5, then according to the algorithm this becomes ged of 5
modulo 3 and 3. It says gcd of 2 3, then this becomes gcd of 3 modulo 2 and 2.
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If I continue then 3 modulo 2 is this becomes gcd 1 2 is gcd 2 modulo 1 1. So, this
becomes gcd 0 1 and now gcd a b equal to 0. So, this is equal to b so this is 1. So, this is
our Euclidean algorithm and we can get now, see here the way we have written this is
that compute gcd a b and this is compute gcd b mod a. So, actually this is with my
smaller inputs, this is my every time we are getting that recursive function with smaller
inputs, this is my recursive function with smaller inputs. So, we can compute gcd or

recursively so, this is one recursive algorithm for computing ged.

And, with this example we see that it is nothing, but the implementation of Euclidean
algorithm. And, in this way we can frame the simple some simple examples I have given
that how we can design, how we can develop some recursive algorithm. Well, which
actually there is some basis step in algorithm form; we can write that is my terminating
condition. And, the recursive step that is my which contains the recursive function; that

means the same function with smaller inputs.

Now, we will continue with some bigger examples that how to frame or how to design

the recursive algorithms in my next class.



