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So, we are discussing the relations. And last day we have seen a special type of relation,

mainly it comes under the properties of relation is the equivalence relation. Now, we

often use relations to order some or all of the elements of a set; and for this, we use some

properties  of  relations.  The  three  basic  properties  that  we  have  read  the  reflexive,

symmetric, we will see today some variant of symmetric, and the transitive property that

are mainly used. But, here the relation is called the something called partial ordering.
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So, today we will see how relations are used to order the elements of a set. So, we will

read the partial ordering or sometimes we call partial order ok. Now, when we use the

relations to order the elements of a set, say if we see some example that we use relations

to order the elements of a set, this is a general thing.

Now, as an example I can tell  that to order the set of integers containing the pair of

elements say x, y, and the relation is less than or greater than, relation is less than say x

less than y. Normally, we called x R y, where R is the relation is the less than or we use

the to order the words. 



So, we write other example that to order words using the relation containing a pair of

words say x, y when I think; when x comes before y. So, here if we consider our alphabet

set say A to Z in order that means as if A is in position 1, B-2, C-3, and this is Z in 26, so

this is in some in some order. And this ordering will govern that which letter  comes

before Y. Say X comes before Y, if X position is less than the position of Y, and here

positions means that 1, 2, 3. And normally this is the ordering we use in dictionary, and

that we will be again in details we will be describing later.

Now, another example we can think, say on more practical example that we can schedule

to schedule the tasks of a project, again using the relation say a relation a pair x, y pair of

tasks x,  y a pair  of tasks and the relation is  and the relation  is  such that x must  be

terminated before y begins. So, for this type of examples, we can use relation. And this is

some  particular  properties  that  mainly  the  reflexive,  the  anti-symmetric,  and  the

transitive properties are used for that.
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So, we define the partial  ordering first.  So,  relation R on a set  X is  called a partial

ordering, if the relation is reflexive, transitive, and anti-symmetric. Now, if we remember

that instead of instead of anti-symmetric, if it is symmetric, then last day we have defined

that as a equivalence relation.

Now, a set X along with this relation R is called the R is called the partially ordered set

or more commonly the term is used called the poset correct. Normally, we denote that as



the term here it is X, along with the relation R, we called this is my poset ok. And the

elements of X the elements of X or members of X elements of X are called the elements

of poset. 

Now, we see first one simple example we see some example. So, show that greater than

operation that the relation greater than equal to right is a partial order or partial ordering

on the set of integers. Normally, the relation is relation is R; we is greater than and the

set of integers the set of integers normally we denote as Z. 
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Now, see what  are  the properties,  the  relation  holds? Previous  example-1 continued.

Now, if I consider a pair say a, b, so if or a, b belongs to z. So, my I am I am considering

the set z, and the relation is greater than equal to, and I am checking, whether it is a poset

or not ok. Now, a, b belongs to z. So, my relation is R is R is greater than equal to, so if I

write a R a. Since, a equal to a, so a R a holds, a R a is true that means, my relation R is

so a R a is true, so the relation is reflexive. 

Now, if  I  consider  that  some relation a  R b that means,  a greater  than equal  to b.  I

consider b R c that means b greater than equal to c, where a, b, c a, b, c all belongs to z.

Then since it is positive integer or a set of integers, so I can write that a so a greater than

equal to c that means, a R c holds that is a R c holds, so it is transitive. 



Now, if a R b if I consider a R b, and a not equal to b, since my relation is greater than

equal to so that means, here I have to consider only greater than that means, a R b and a

not equal to b means only a greater than b. So, now if I consider a greater than b that

means, if we remember the definition of anti-symmetric that means, a R b and if a not

equal to b, then b for this relation greater than b R a, this is it holds, because never b R a

is true this is true. That means, if a greater than b, then b cannot be greater than since a

greater than b, so b cannot be greater than a. So, this relation is anti-symmetric. So, my z,

greater than equal to this is a these set of integers with the relation greater than equal to

is a poset is a partially ordered set.
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Now, we see another example. We give example-2 as the instead of the greater than equal

to we take one relation the divisibility. So, you show that the divisibility relation is a

partial  ordering  on  set  of  positive  integers,  normally  we  denote  as  z  plus.  And  the

divisible the relation, we denote relation R, we denote as the by division. So, we have to

show whether we have to show that the z plus with the relation divisibility is a show this

is a poset. 

Now, first we see the reflexive. See always a R a is true, since a divides a divides a is

positive integer that a belongs to z plus, so it is reflexive, so it is reflexive. It is also

transitive, because if a R b and b R c that means, that is a divides b, b divides c, so I can

conclude that, so a divides c. So, it is transitive it is transitive.



Now, what about the anti-symmetric say if a R b holds that means, a divides b that is a

divides b. So, if a not equal to b if a not equal to b, then b R a is never true that means, b

is not in this relation a, so this is anti-symmetric so this is anti-symmetric. So, z plus is a

so this is a proof, this is a poset yes it is a poset. 
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Now, we show a different type of example. In the last lecture, we have defined the power

set which is nothing but the all the subsets of a set. Now, we will show that the relation

inclusion set inclusion. So, show that the relation that means, if it is a subset, that is a

inclusion is a partial order or partial ordering on the power set P S, where S is the or

power set P S of set S. So, power set if I remember that power set is the set of all subsets

of S of set S.

Now, we consider a subset A ok. So, if A is a subset of A or we know that it is always

true that A is A subset of A, so a R a holds, which tells that it is reflexive. Now, if A is a

subset of B and B is also a subset of A that means, a R a, a R b, and b R a if both hold,

then we know that A equal to B. 

So, if A not equal to B, then it does not hold; so that means, it is anti-symmetric, because

if it is A equal to B, then actually the condition is false for anti-symmetric property, and

so it is (Refer Time: 26:12) that means, for condition to be the relation one to be anti-

symmetric is A not equal to B. So, then it is anti-symmetric. So, a R b and b R a hold,

then A equal to B. So, it is then it is vacuously true for the property of or that the relation



to be anti-symmetric or I can write the condition that the relation to be anti-symmetric is

false, so anti-symmetric property, so it is vacuously true. 

Now, we have if A is a subset of B, and B is a subset of C, so from the definition of

subset, we know that a is A subset of C, so which directly gives that it is transitive. So,

we can tell that my relation the partial order set. So, the conclusion is the partial order set

on P S, with thus subset this is a poset, this is a partial ordering. 
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Now, we see one example, when the relation is not a poset. Let R be a relation on the set

of people such that the relation holds that a R b if a, b are two people, and a is older than

b. This is the relation a is older than b. So, this is my relation. So, we have to show that R

is not a poset; R is not a partial ordering. Now, we see that the relation is older than.

So, first we see that we take three people a, b, c such that a R b that means, a is older

than b. b R c that means, b is older than c, and which means that so a is a R c holds that

that is a is older than c. So, it is transitive so it is transitive. What about anti-symmetric,

because a is older than b, so b cannot be older than a. If a R b that is a is older than b,

then b R a never holds, so that means, this is anti-symmetric this is anti-symmetric. 

But, see that a is older than b, so a R a that one person can never be older than himself or

herself. So, a R a it never holds a R a never holds. Since, one person cannot be older than



himself or herself, so it is not reflexive so the relation is not reflexive not reflexive. So, it

is not a the conclusion is conclusion is that relation it is not a R is not a partial ordering. 
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Now, we can define that in this relation one thing is called the total order, because we

read the term partial order. So, what is total order for that we define a comparable or

incomparable set. The element a and b of a poset; if it is a partial order set, say in X, R is

comparable if a R b or b R a holds. That means, if I consider the relation R as the say less

than equal to, then either then either a less than equal to b or b less than equal to a holds,

then it is a comparable then this comparable.

But, say if I consider say relation is a division divisibility property, then a divides b or b

divides a that is comparable, but not for all sets it may not be true. Then it is called then

if it is not if that means, if neither a R b or b R a hold, then they then it is incomparable. 
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Now, now if I know the comparable and incomparable, so I can define the total order.

See total order of set X, and I take a relation like this is a or I can give the simply I can

give the relation R is a poset, and every pair or every pair of elements are comparable,

then x is called a totally ordered. 

So, just now we have seen that the set of integers set of integers z, and less than equal to

this is a totally ordered set, because, if I consider any two elements in the set, they are

actually comparable, but if I consider positive integer z plus, and division then not a

totally ordered set. Since, if I consider say 3, 7 3 and 7 this pair, then 3 R 7 or 7 r 3 that

means, 3 does not divide 7 3 does not divide 7 or 7 does not divide 7 does not divide 3.

So, 7 R 3 in it they do not hold. So, it is not a totally order set.
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So, well ordered we can define as the so well ordered earlier we have defined. Now we

give a different definition that if it is the set X with a relation R is a poset, where the

relation R is a totally order, where R is a totally order or total ordering better I write R is

a; R is a total ordering, and every non-empty set name subset of X has a least element ok.

Now, the most important application in poset is the lexicographic ordering in dictionary,

we know this is lexicographic ordering. All of we know that in dictionary that normally

the words are appeared according to the ordering of their letters. And we can show that

how this a poset or how this constructions work in a poset so how this constructions

work in a poset. 

So, if we define say I have a poset A 1, say less than equal to; I have a another poset A 2,

then I can take some Cartesian product of Cartesian product of these posets, because

finally these are all sets with some relation. So, we can take Cartesian product of say A 1

cross A 2 cross say if I have some A n; now how I define this Cartesian product?
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Say if so, I consider some two pairs consider two pairs a 1, a 2 and b 1, b 2. Now, either a

1 less than a 2 or a 1 equal to a 2, and for some integer I that I can consider that or some I

greater than 0 that a 1 equal to a 1 equal to this is a 1 equal to a 2 this is wrong, a 1 equal

to b 1 this is ok. 

Since, we are considering a 1, a 2 and b 1, b 2. So, this is a 1 less than b 1 or if a 1 equal

to b 1, and for some integer i greater than a 1 equal to b 1, a 2 equal to b 2 like a i equal

to b i, then the next a i plus 1 less than b i plus 1. Then the lexicographic ordering is that

the word say a 1, a 2 that a i a i plus 1 that is ordering is like that b 1 b 2 b 3, b i b i plus

1.

Normally,  this  is  mainly  used  in  our  arrangement  of  dictionary.  So,  lexicographic

ordering,  which  is  nothing  but  the  application  of  poset  that  is  mainly  used  in  our

dictionary. So, how this relation and the property are used for practical purposes, this is

one of the examples.


