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Lecture - 12
Proof Techniques (Contd.)

So, we are discussing about the Proof Techniques and in the last lecture we have started

the  indirect  proof  techniques.  And under  indirect  proof  techniques  we have  read the

proof by contradiction.
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 In the proof by contradiction we have assumed that when the theorem is represented as a

if  p  then q,  then  using the hypothesis  to  be  true  p true the negation  q;  that  means,

conclusion which we have to prove true false and then other  axioms definitions  and

previously derived theorems we have tried to prove that the conclusion is true or to give

a contradiction. So, that was the indirect techniques or the proof by contradiction.

Now, how do we know that the proof by contradiction works correctly? Or more simple

way if I tell that what we are assuming that negation q and if p is true and negation q

together they imply a contradiction. That means, r and negation r whether that is working

correctly  or  I  can  tell  that  whether  they  are  equivalent,  I  can  tell  p  and  negation  q

whether they implied that r an negation r and whether this thing is equivalent to p and

negation q, p implies q and r and negation r.



So, if we give it proved by the truth table method. So, we first give it to table that since

here we have 3 propositions. So, I take a truth table give a truth table of next page we go.
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That p q r these are the 3 values then we take p implies q, if p then q then our assumption

that p and negation q that we have assumed for contradiction and then the contradiction

itself that r and negation r, then whether p and negation q this implies r and negation r.

Now we have to show that  whether  the p implies  q; p implies  q because this  is the

theorem that we want to prove; that means, if p then q which is which is p implies q and

p and negation q implies r and negation r. What is the basic principle of contradiction? I

write this is my principle of contradiction. So, first I show that whether this method is

correct  or  it  is  coming  correctly  that  the  way  we  are  applying  the  principle  of

contradiction, we take all the possible truth values of p q r. So, we take T T, T T F, T F T,

and T F F then F T T, F T F, F F T and F F F. 

So, what is p implies q? P T T implies T is true this is also true only T implies F this is

false again T implies F this is false again when it is a all lay this is vacuously true so all

are true. Then p and negation q, negation q is, for the first two cases it is false. So, this

becomes false next to a true, then again negation q is false. So, this is false again these

are false. So, accept this two, accept these two these are false. What is r and negation r?

Always false r and negation r is always false. Now see p and negation q implies r and

negation r. So, F F true, true only these two cases the T implies F we know these are false



and remaining all are true, all are true. So, you see from p implies q the second column

the T T, F F, F F and again remaining for T T T, F F and T.

So, these two are; these two are equivalent you see that this column and this column are

equivalent. So, the technique that we are using in the contradiction method that it is proof

that it should work properly; that means, p implies q that the theorem to be proved; that

means,  the  proposition  and  which  is  equivalent  to  p  and  negation  q  implies  r  and

negation r. So, this is the basic principle of contradiction.
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Now one special case of contradiction is the contrapositive and what is the principle of

contrapositive?  We know  the  when  we  have  read  the  logic  that  if  p  implies  q  the

conditional proposition that it is equivalent to that negation q implies negation p. So,

sometimes to prove some statements or theorems that it  is  much easier to show that

negation q implies negation p instead of p implies q. 

We see one example, same for any integer m if m square is odd then m is odd this is one

statement that we have to show that it is true or we have to prove. So, if m square is odd

then m is odd. So, our m square is odd this is our hypothesis p, if p then q so m is odd

this is my conclusion.



So, this is my hypothesis this is my conclusion and what contrapositive tells? That p

implies  q  and  negation  is  equivalent  to  negation  q  implies  negation  p.  So,  what  is

negation q? q is m is odd q is m is odd. So, negation q is m is even. 

Now, we know the definition of even number. So, m is even is we can write 2 k. So, what

is m square is 2 k into 2 k equal to 2 into 2 k square. So, again this is a even number

since 2 into 2 k square we can write 2 into k 1 so that is a even number. So, what is even

number? That hypothesis was m square is odd and we are getting m square is even; that

means, it is negation p, this is my negation p because p was m square is odd. 

So, negation p is m square is even. So, what we see we started with m is even; that

means, the negation q and we got that it is negation p; that means, negation q implies

negation p. So, and we know that this is equivalent to p implies q. So, since we get that

this that this is true then p implies q so q is true. So, it is proved. So, this is by prove by

contrapositive, this is a special case of contradiction.
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We see another example that, prove that there is no positive integer n such that n square

plus  n cube equal  to  100.  How to  prove this  thing?  See two ways I  can prove  this

method; very simple way.

So, one method see one way I can tell that n square plus n cube equal to 100. So, if I

have two terms in the left hand side. So, if I think separately then n square must be less



than equal to 100 and n cube also must be less than equal to 100, since the sum of n

square plus n cube equal to 100. So, n square less than equal to 100; that means, n must

be less than equal to 10 similarly, here I can tell n less than equal to it is 100s. 

So, 4 because if it is 5 then it is 125. So, n less than equal to 4 because if I take both that

thing together then only for n equal to 1, 2, 3, 4 these cases we have to check. Then what

is the value of for n equal to 1? n square plus n cube is 1 plus 1 which is not equal to 100

for 2, for n square plus n cube equal to 4 plus 8 12, n equal to 3 36, n equal to 4 is it so,

no one is these are not equal to 100.

Now, see here the proof is another way I can do, another way what better I tell that thing

also that I can do in this way n square plus n cube equal to 100, I take n square 1 plus n is

100. So, since these are two factors we know the if when the factors of 100 these are 2, 4,

5, 10, 20, 25, 50. Now see n square this is a perfect square and in the factors of 100 there

are only two perfect square, 4 and 25. So, if n square is 4 then n is 2. So, 1 plus n is 3, 1

plus n is 3. So, 4 into 3 this is equal to, 4 into 3 equal to 12 not equal to 100 and if n

square equal to 25 then 1 plus n equal to 6, n equal to 5. So, then in that case 25 into 6

this is equal to 150 which is not equal to 100. 

Now, these are the two ways I can prove that n n square plus n cube equal to 100 that it is

there is no such positive integer n exists. Now see in this technique in both the cases the

way we have proved, what we have done we have taken different cases of n or different

values of n we have taken say the first method we have taken (Refer Time: 20:38) write

method I, this is method II ok. 

1st method we have taken n equal to 1, n equal to 2, 3, 4 and we have seen whether n

square plus n cube equal to 100 or not. Here only the cases are we have taken n square

equal to 4 and n square equal to 25, but see here also we have taken that 2 cases, here

there are 4 cases here there are 2 cases. So, this is one technique which actually comes

from the either direct method or indirect method, but this we categorize in a different

way we will call that that proof by cases and many time this is very helpful or much

easier to prove some theorems.
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So, we can tell that this is the proof by proof by cases. How we define? Because our

theorem is stated as or represented as if p then q. 

 And if we can elaborate if p it takes for very x 1, x 2, x n then q x 1, x 2, x n; now these

if p is partitioned in to different cases. So, p is partitioned into cases see p 1, p 2 p n then

I can write p I can write as or I can write the theorem statements p implies q. I can write

p implies q is equivalent to p 1 implies q or p 2 implies q or first p 1 is p is partition. So,

better I give p 1 or p 2 or p 3 p n. So, this is p, this whether this implies q and this is

equivalent to p 1 implies q and p 2 implies q and p 3 implies q like that, p n implies q.

So, we these are these are considered as the different cases and if I can prove then we can

tell that this is actually proof by proof by cases for each cases. So, this is now we take

one example. 
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So, then the last digit or sometimes we call final digit of a perfect square are only are

confined into some digits they are 4, 5, 6 and 9 ok. So, we have to show that the last digit

of a perfect square are only confined to these num decimal numbers 1, 4, 5, 6 and 9. So,

now, if we take by cases so I can think in this way that solution. So, this is case 1. 

So, I take the squares of number 1 and 9 or we can think the number whose last digit is 1

and 9, then the last digit of that particular integer number is only 1 because 1 square 1

and 9 square is 81 so the last digit is 1. So, I can write this is my last digit. Now the case

2, the squares of number 2 and 8 and this is 4 and 6 plus digits will be 4 and 6 case 3

squares of number 3 and 7, both the cases it is only 9. Case 4, 4 and 6 both the cases it is

only 6 also this is wrong, this is only 4 64. So, last digit is 64.

Then case 5, squares of number 5 is only 5. So, what we see that the whatever be the

numbers that last digit is from 1 to 5 and then these are 1 for 2 and 8 is 4, 3 and 7 9, 4

and 6 6 and 5 so; that means, these are only the last digits are last digits last digit of

perfect square is 1, 4, 5, 6 and 9 it is proved. So, this is a very simple example of the

proof by cases, many time that one complex prove is becomes very simple if we can

partition the case, it partition it into cases.
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Now sometimes we call that there are many different, other different techniques which

are actually derived from direct or indirect one such is that a counter example we created

that one is that by counter example. So, just to give one example that show that for all n

2 to the power n plus 1 is prime, whether it is true or false or I make a statement rather

that. So, for all, this is my statement on statement that for all n 2 to the power n plus 1 is

prime.

Now, if we again do by cases say for n equal to 1 we see that this is 2 prime for n equal

to 2 then it is 5 prime n equal to 3 it is 9. So, you see that for n equal to 3 that 2 to the

power n plus 1 this is this is not a prime number, but this is a composite number 9. So,

this is a counter example and we can tell that this is a counter example and we can tell

that this is a false statement this is a false statement. 

So, many time that we can use that this is proved by counter example. So, these are

normally the different tech techniques direct or indirect and these are the prove by cases

or  the  counter  examples  or  the  contradiction,  the  contrapositive  which  are  slightly

different  variant  of  that  direct  indirect  methods.  And  another  way  another  proof

techniques which is very important particularly in computer science that is that proof by

induction. So, next step will read that thing.


