
Programming in Java
Prof. Debasis Samanta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 33
Demonstration – XII

So, this demo is based on the topics that you have covered in the last three modules. That

last three modules in the last three modules; we have cover on the topic Input-Output

streams in java. And as you know the input and output is the very important, and what is

called the activities is a very important activity in any program development. And in

order to make this diversified input-output process that means input from the different

sources, output to different sources, there are many many mechanism rather many ways

has been devised in java system.

(Refer Slide Time: 00:53)

Now, today we will discussed about how the different in way of input-output is possible.

There are some trivial input output mechanism, those are related to the standard input,

and then standard output namely keyboard, and then display unit we have already

covered, we usually used it in our previous programs. But, here we will discussed about

other than the standard input and output, how we can store some data into memory or we

can receive something which is stored in hard disk like.

So, our demonstration includes how to create, how to open, and close a file, how we can

create our own file. And there are again two different classes rather we can say the ways

the byte stream classes, and then character stream classes to read and write into file from

file by means of data input stream and the data output stream. So, we will discussed

about the usage of these two classes to create files to access the data, all these things.

And then we will discussed again file handling java in java. So, file is basically

secondary storage right, we can store some data in a permanent non-motile way into the

secondary storage space. So, how we can create a file such a secondary storage, and also

how we can open, how we can copy, how we can merge, so many other things are there.

And few advanced methods, they are called buffered input stream, and sequence input

stream to make our programming easy we will discuss in this demo.

(Refer Slide Time: 02:51)

So, let us have the demo for first thing, and this demo we can start about from very

simple idea about using the data input stream class. We have already familiar to this class

in our last in our earlier discussion we have used it. So, data input stream class as in the

name in implies that it will basically for the input purpose, then we using this class, we

can read something from some sources.

Now, here we will see exactly data input stream class can read from memory, can be

from network channel, it can read from standard input device. This example illustrate

how the data input stream class can be configured, so that we can read some data from

the standard input namely the keyboard. As we see the program here, so this is the main

method as we see here. In this main method, we create two way fields namely the

principal amount, and the rate of interest for which we want to read the value from the

keyboard, and the number of years also. So, the three input needs to be collected from

the user through keyboard.

Now, here basically we create an object called in, and this is object that object is created.

And then this object wants that it is created by means of a constructor, where the input is

basically system dot in. Now, system dot in implies that it is a standard input the system

dot in this is already defined in the java dot line, so from there it will get the definitions.

So, it will basically is a standard input.

Now, so basically what we do we here that we create and data input stream object, which

basically connect your program to the keyboard. Now, let us see we given from to the

user that entire principal amount, here basically we have discussed about that for seeing

that means, keyboard has its own buffer. So, we have to clean the buffer, each time we

are going to read from it.

So, system dot out dot flush is basically clean it is now here then ok, so it will read from

the object in here that means which connect the keyboard. And the in that read line for

this method read line means, it will read the entire content that is there is a buffer. So, the

entire whatever the value we will enter, it is read it here, but as you know the value that

will be there is a buffer java program read it as a stream. So, we temporarily store this in

the stream format here, so it will basically read as a stream. Although these are may have

entered some value say 5, 6, 5.25, so it is basically plotting point or double value.

Now, here we convert this string value into our double value or float value. So, using the

float method for this in the class float, which is defined in the java dot net (Refer Time:

06:02) package, and for this class there is a method called value of this is a static class

actually. So, we just convert this string into the float value.

Now, again we read the another form enter interest again we flush it, and then read line,

again read the buffer, and then again convert this string into the float value which stored

in the rate of interest. Say again then we need the integer number from the read, we

convert it into integer format as initially it is a string, and then store the value is a

number of years here. So, this is the way we can read the three inputs from the standard

in standard input that is the keyboard here.

And then finally, we calculate these are trivial process. Now, main thing here we can see

you can tell here is that how using this data input stream class, we can create a stream

object which connect your program to your keyboard. So, the stream can be propagated

from the input source to the program. Anyway, so this is the simple program we are

already familiar to, and we have discussed it many times earlier. And other than this class

also there are many way the input can be found the standard device like common line

input, and then the using the scanner class which is defined in java dot util package, we

can run all this things.

(Refer Slide Time: 07:43)

Now, our next example that we are going to discuss about is basically as we have

discussed about all the data input stream class is basically the two fold using the byte

stream, and then character stream. Our next example this examples to illustrate how we

can output to a file which is stored in a secondary storage, and we can propagate the

output from the program to the file in the byte form. As you know byte is the smallest

unit a chunk that the java program can handle it.

Now, here is a program as you see here ok. First you have to import java dot io dot file

output stream, this is because we want to propagate the output to a file. And this a file

output stream class in defined in the java dot io dot package, so the import is must. Now,

here is the main method as we see we create an object name of the object is a f out is

basically of type file output stream. And here you see the constructor the file output

stream has its own constructor, where an argument is required is basically the target. So,

here actually the target we have mentioned explicitly, where we want to store this

content.

So, as you see it is in the D drive under these D drive there is a directive demonstration,

under this demonstration XII, and then this is basically the target file and test dot txt. So,

you should explicitly mention path of the file, where you want to store your data. So, this

is a way that we can do it. Now, here you see for this object f out, f out therefore object is

basically the connection from your program to this file test dot txt.

Now, from the programme we can write 65. Now, 65 is basically here in integer form,

but it will be converted to and byte form as you know the 65 byte in the byte form, it is

basically capital A character. So, ultimately although we give the 65 your program the

system will convert into it a byte that means, 65 in the byte is basically the ASCII code is

a. So, a will be store actually in the file. And then finally, once the file is open, we have

to close the file it is always, you should close your file always wants your task is over,

and then finally it print the writing is over.

Now, this program as you see this program will write 65 in the byte code form into a file

test dot txt. So, after the successful execution of this program, we will see the output file

here test dot txt that 65 is told there or not. So, this program is run successfully, and then

output file is here. The test dot text test or text is now displayed as we see it basically

store a.

(Refer Slide Time: 10:41)

Now, in the same program if we again write 90 f out write 90 type it no another write, 65

is the here write yes in addition write.

(Refer Slide Time: 10:59)

Now, we are writing another 90, as you see it will happened after the first 65 that mean

A, and corresponding the 90 byte code, it will be stored there in the same file again.

Now, here the same file can be AZ. So, Z is basically the ASCII code for the 90 ok. So,

we are learned about how in the byte form, we learn more about in the byte. So, the next

example, suppose you want to store an array of elements into a file. Here we can give an

idea about how using the bytes code system, and array of elements can be stored into an

into a file.

Now, this program as we see the main program we first created array of bytes, so here D,

E all these are basically the ASCII value within the single code whatever we mention, it

is basically the ASCII value of that character. So, capital D, E, L, H, I, so ultimately like

the previous program as we see this is the byte so A it will store, but it will store now in

the array. And this array is basically byte array, because it is declared as a byte type array.

We can declare float, integer also that way it will store the integer from that way.

Anyway, so this basically now we create one output objects, so output file is a type of

file output stream very similar to the previous one. And then we decide it is a create the

object, and finally we make a connection that where this value will store. So, for this

object output file, we establish a connection to this is the location. So, the location is as

we see location is city dot txt that means, this is the output destination target, where the

output the entire things whichever here will be there.

And then finally, you write the entire array here, so passing the array name here and

finally close, these are the same as earlier now ok. So, this way the entire array elements

will be stored into the file. Now, let us run the program, and final you will be able to see

the file in this case city dot text txt, which store all the values that is there in the byte

array ok. So, file has been written successfully.

(Refer Slide Time: 13:43)

And then we will be able to run the we are display city dot txt as we see here Delhi,

Mumbai, London. These are the basically ASCII character as it is there in the byte array.

So, it is basically print a store successfully. So, this program says how a an array, and the

similar way this program can be an extended to store any array actually, whatever the

you can use a byte array rather you can use the characteristic classes also whatever it is

there.

(Refer Slide Time: 14:07)

So, an array of elements can be stored, a single element can be stored, and like this, here

we are storing all these things in our memory. Now, our next example again using file

output stream classes that we have discussed that we have to pay to copy some text using

again byte array steam into the same file.

Now, here is a program as we see, it is the same file output stream class. Here file output

stream class, create the object, and we just connect it to one target test out dot txt. And

here we create a stream here welcome to nn NPTEL. Here is a small string we have

considered, many other large string also we can include say, other things also you can

input here.

For example, type here welcome to NPTEL, hope you are enjoying java programming

hope you are enjoying java programming ok. So, this is the text whatever the text may be

here only few characters, very big I mean very large file also can be consider. I will

discuss about how a file can be entire file can be copied here, anyway our objecting is

that these stray string, which is basically here in the program, I want to store into a file

the name of the file is test out dot txt.

Now, we first store this string into the form of a bytes. So, here is a mechanism for a

string object, how we can convert into the bytes. So, basically string this is the string and

we converting into the entire string content is the byte. So, get bytes is a method for the

string class, which is there in java dot (Refer Time: 15:57) package. So, we temporary

stored into an array byte array, it is the similar to the city array we have as discuss there.

Then write function write method for this a foul file output stream class, which basically

write the entire array, it is also same as the earlier one and close. And finally, file writing

is over (Refer Time: 16:16), and then it will there.

Now, we see after the successful running of this program. We will see one file test out

dot text has been created, where we could store the stream which has mentioned there

fine. As we see this the yes, so now we are displaying the file content as we see this is

the content has been pushed to the file, which we have displaced there. Now, so this is

the way that now so far what we have done is that we can create something we can store

something from our program to file.

(Refer Slide Time: 16:57)

Now, we learn about how to read a content from a file. Now, this very simple program

for this purpose for reading some content from the file, we have to have that create object

for the file input stream class. So, file input stream class, because we have to go for input

process. And then f in is the name of the object of this class we have created, and this is a

usual process of creating the object, and giving the explicit mentioning where actually

from which file we want to read.

So, in this example we want to read something from test out dot txt, which file we have

already created like welcome to NPTEL like. And here int i a f in read, you little bit

carefully observe for the fin object. A f in object means that is a connection from this

program to this file, we inform the method read.

Now, read method always read one character at a time, so this means that the whenever

we create the object file object here, it basically point to the first character in that file,

and it will basically read that character. And this character actually written by this read

method as an ASCII value of the character that means, it will read there. And finally, we

can print this character by casting it that means, i its ASCII value will be converting the

character corresponding to this, and it will be stored there.

So, you can note that in the previous example test dot out, we have store the welcome to

the NPTEL. So, W has been store there, and W being the ASCII value, and then it is it

will be access it, and then it will display from your program. Now, here you can see here

you can see here, you can see W is being printed. Now, if little bit change this program

without casting it, you can see here without casting it, we can run the same program

again, but only the its integer value rather it is basically not ASCII code, it is the ASCII

value.

Now, here we see we print here in case 87 and 87 is basically the ASCII value for the

ASCII character W. So, this is basically the way here exactly we save this programme

earlier in the byte code form, here we read in that ASCII form byte form, and then

printing into its character. So, conversion is it possible. So, this means actually I want

emphasize is that whatever the way in the byte or character, you can do it and you can

read it also no issue it is there.

(Refer Slide Time: 19:55)

Now, we learn about more about regarding the charactering the stream classes. As we

have seen in the last example, we could read only one character from the file. If you want

to read the entire character set stream text from a file, what is the program should look

like? In this case, again we have to create an object for the file input stream, because we

want to read a file. And here is the object the same way, we created the object a f in. And

this is the for example, test out dot txt is the target file from, where you want to read the

entire text. As you know in this text, we have written welcome to NPTEL hope you are

enjoying java programming like.

Now, here this basically is the loop instead of only single character, we want to read it all

the characters which are stored there in this test out dot file. Now, a f in dot read, it is

basically to be looped until here is the condition. This is very important not equals to

minus 1, so not equals to minus 1 java implies that it is the end of file. At every end of

file whenever you put file close; the java put a minus 1 there indicating that this is the

end of the file, so minus 1 is a termination condition for a file object.

Now, it will basically read the file content. And here the content which will be read from

their file input stream in the byte form, we convert the character and those things will be

converted printed on the screen. And finally, wants the entire file is scanned, it will

basically closed. And here you can see it will read the file sequentially the first, then

second, and third and so on so on, until it will reach to the end of file.

So, these program again as you can understand anticipate. If we run, it is basically

extract all the content, which is there in test out dot txt, and display on your terminal. So,

I am running this program, and then will see after running. So, this program has we see

here, it basically show the output entire which has been accessed from the text out dot.

This is the basically content, which we have stored in the taste out file and this exercise

and displayed it.

(Refer Slide Time: 22:03)

Now, so we are learned about how we can open a file. And then from that file we can

read the content in the form of a byte. And our next example is basically regarding the

file status checking. So, it is a 12.6 programme, we are going to see about it. Now, here

you know so for the status of the file is concerned. Whenever we store a file or operating

system maintain all about its file that mean in which directory what is the name of the

file, what is the extension, whether the file is in which mode readable or writable,

whether file is available or not available, whether file is corrupt, whatever the

information it is there. So, it is basically the program, which all these information can be

accessed from the program site itself.

Now, here we can see this is the program, and it basically two methods we have

discussed here in this class, this is basically our main class. The method is get paths, and

another method is gate info. Now, so for the gate path method is concerned for a object

file object. So, file is basically one class, which is define in java dot io io package, so dot

star include that file package the file class need to be accessed. So, file for this we will

pass this file object, whenever you call this get path.

And now here you see this get path method input simple three statement namely, it will

basically give the name of the file f dot get name, the name of the file f dot gate path,

which path actually it is stored. And f dot get parent what is the parent, if it is there. And

then so far the get info method is concerned, if the file exist that means, if file is not null,

file exist means you can pass information which is no more exist. So, in that case if it is

exist, it will just exception.

If it is exist it is true, then it will go for this printing f dot can read, f can write that

means, it basically whether this file is readable or write writeable, read mode or write

mode, read permission, write permission. And then it also say the last modified whenever

you created file, system always store at the last modification of the date of this one so

this one. And f dot length is basically how many bytes, basically how many byte

basically are stored there in this file. So, they are the information.

Now, let us come to the main method here. So, this is the main method this is the main

method. Here basically we create one file object name of the object is file to check. And

then if args dot length, basically we can we can pass the common line input, so that we

can run this meth program for as many file you want to check for it. So, it is basically

args dot length args sense. And for each file argument we have passed it, it will basically

call the get path and get info method that means, it will retrieve all the information

regarding the file name path and status of it, and finally it will come to the end of this

program.

(Refer Slide Time: 25:27)

Now, will run this program passing three input as a common line, and say the input is

input is say city dot text, we know we have created one file test text dot txt and test out

dot txt. These are three files are already we have created. Now, so we can see ok, we are

running this program using passing three input city txt, txt dot text, and text out dot txt

fine.

Now, here you can see the output as we see path test dot txt parent there is no parent

actually indicating null, and then and is writable. Last modified this is basically the

system time it is in a some (Refer Time: 26:13) form, and then file size is two bytes.

Now, name city text, path is city text, parent there is no parent for the, this file. Readable

file it is also it is a writable, last modified this one 20 bytes, this also like this. And here

you see text dot out text this basically file does not exist, because this file actually it is

not there whatever it is here.

(Refer Slide Time: 26:47)

So, whatever file you have passed to the program, this program from side it can check

the status, and can show you. Now, we have discussed about so far the byte stream

classes for reading as well as writing. Now, it is our time to learn about other classes, so

for the file handling is concerned. They are called file reader and file writer class.

Now, we are going to have a demo. Here in this demo, we will see how we can copy the

content of one file into another, so basically making a duplicate, and using file reader and

file writer class. So, this program again we make the program for illustration as simple as

possible, we can see we fast create one object in file for the file. This basically creates a

connection from this program to this target date input data. Assuming that input dot dat

file is already there in the system. If it is not there, then it is throw an exception, because

file opening will not be possible anyway.

So, this is also another out file, and this basically where the content will store. So, here

we have created two file, in file and out file for the two purpose; purpose is that reader

and writer. So, I just create an object ins, so that in file can be used for the input purpose

that means, from in file I will be able to read something. So, inside out are the two

objects of type file reader and file writer for the input and output mechanism.

Now, here for ins we create the file reader object for the infile. So, in this case infile

means, it is basically input data. So, in other words ins means, basically a connection

from your program to infile, infile means input dot dat. Similarly, outs is the connection

from your program to out file that is the output dot dat file. Now, here basically we have

to read each and every character those are there input dot dat that means, infile. And then

write into the out display on the it is basically read the entire file, and then outs write

means it will store into the output file.

Here we see the statement that we have ins read means read one character from the file at

a time store as ch the temporary store. And then same ch, it write into the output file outs.

So, reading one character from the ins, writing the same character into the outs that mean

input date and output date. So, this program and also we have filled up with try and catch

you have to always use try and catch block.

(Refer Slide Time: 29:27)

As there may be some situation unwanted situation, whenever a file is not accessible the

file read permission is not there, write permission is there or file is no more memory

space is available to avoid so many situations, we have to handle the exception. So, those

things can be done by try catch mechanism.

So, you have to handle for every occurrences either creating file or reading or writing,

whatever right so they should be put into the try catch flow there. Now, here is basically

as we see the output welcome to NPTEL is the input dot file. And we copy this the same

content, and also create the output file welcome to NPTEL. So, we created the duplicate

of one file input dat the name of the duplicated file is output dat.

(Refer Slide Time: 30:29)

So, we have learned about how a file copy is possible. Now, here another example in the

last example, we have discuss that copying the file using characters, so it will basically

character stream classes. We want to do the same thing again, but using byte stream

classes. The difference is that in the last example, they will read as a character, but here

they will read as a byte that is all.

Now, the mechanism is almost same, but there is again reason that when we have to read

character, when we have read byte. Whenever the hydrogenate is concern, then you

should use the byte stream classes. And homogeneity means in the same system

whatever it is there, you have created the file in macro ways, and want to read from the

windows, then obviously byte stream is the best procedure. But, if it is the same system

(Refer Time: 31:09), then you can use whatever method you can. So, byte stream is

always preferable.

Now, here is a program as we see the same as a in file, and out file are the two file input

stream and file output stream object. We create the connection in file, passing this is a

target is the input source is the target that means, where the file will be stored there, now

here is only mechanism it is difference then the previous one.

So, here byte read temporary store here as a byte in file read, it will read from the in file,

store if the byte form, and it is the byte ok. And then by read is again while this is not

equal to minus one mean, you have to copy scan the entire file. So, we have to go for

loop. And it read one byte at a time, and the same byte is write into the output file, and

again go for reading the next, and then loop continue and until this one is there.

Now, input dat as you see welcome to NPTEL restored there. And here out dat file will

be created now, if it is successfully copied from that file. So, mechanism is little it

different, but the target objective is same object is that we are copying from file to

another file yeah, file has been created out dat file we are going to display the out dat file

yeah, this is the out dat dat file, you see this is the continue file that we have obtained it

after successful compling competition.

(Refer Slide Time: 32:37)

Now, so this is the idea about, now before concluding our demonstration we want to have

two more chance in programming illustration. This is the utility of buffered output

stream class like also buffer output stream, buffer input stream. In our next two

examples, we will demonstrate how the buffer output stream and buffer input stream is

possible, it is basically same thing the same idea about byte stream actually, but you use

another class that is there already java jdk call the buffered output stream class.

Now, let us have a quick look of this program here, we just create file output stream of

this, because you want to read something to write into somewhere for the file output

stream, we want to write something into test out one dot txt. This is our target file, where

you want to store it from our programme, we want to put somewhere into this target.

Now, let us see what is the program that you have to put string s welcome to NPTEL,

this means that you want to write stray string, string into this one, but here we want to

store it using this is the object the buffer output stream object call the b out. So, is

basically b out is a buffer output stream is basically is a connection from the f out. So,

the f out to this one that means, it will channelize the content. And then is stored in a

buffered output stream form and that in this one.

So, here at this stream S will be from our program, and we convert in the string and here

write b byte, and then we will store into the b out form. Now, this idea about that byte

buffer output stream classes is there, and this kind of program although we are storing

our programme. But, instead of this program if it is a network source at the moment, we

do not have any network experience. So, we will not be able to do it with a networking

example, but here this S can be forms a network channel.

Now, you will receive the buffer output stream from the network whatever the stream

will come, we will buffer it first in our local buffer, and from that buffer we will push

into the file target file. So, basically suppose you are downloading an image from the

website, and then this image can to be a very large one, so we will buffer into. So, in that

case we should use buffered output stream object, so that we can store and image as a

buffer form instead of the entire image can be push there, because entire means too large

maybe few MB, and you cannot put it there, so it is a buffer form. So, for this purpose,

we will do it yes.

Likewise, buffered input basically if we read very large image from the channel network,

and writing into a channel network like ok now, let us see here, how we can write this

things into this one. And ok, so here the file is successfully content, here we can see

directed our output to a file. But, here instead of directing this file, we can direct it into

some network port, so that through network this can be transmitted. We will see about

the network, whenever you will cover the networking in this module in this course.

(Refer Slide Time: 36:19)

Now, the next example just opposite to this byte output steam buffer, here the byte buffer

input stream class. Same problem here, basically here we just create the buffer input

stream that means, we will read something. Here we will read again from this object out

dot dat out dot dat is already stored there.

So, instead of out dot dat here, we can in this source we can maintain the network port

number socket all these things. Here we will just read the output at in source of the input.

And then it basically read the entire content, and then read in the form of a byte, and then

print on the screen. So, it is basically the idea about buffer input stream, and then

buffered output stream concept yeah this program as you see using the buffer input

stream, we can access the file.

(Refer Slide Time: 37:19)

Now, if I ask you the same thing instead of buffer input stream using simple data input

stream and output stream, you can do the same thing, you can do it actually you have

done it already. Now, our next example to illustrate the usage of sequence input stream

class. Now, so the sequence input stream class is basically can handle two more files

together. And it will automatically manage it without any intervention within them.

 Now, here is the program you see, first we create one input stream file input stream

namely input-1 and another input stream-2. So, here input-1, and input-2 are the two

input target source I can say. And these are two source namely input-1 dot txt, input-2 dot

text assuming that there already present in the directory. Now, here you see we create an

object call inst, which is of type sequence input stream, this class is again define in java

dot io package.

So, we can create an object inst, now why we are creating objective you will see, how we

can create object passing two input as a overloading constructor of this class input-1,

input-2. Here also we can create input-1, input-2, input-3 also, it will take the

overloading constructor will take it. Now, what it will do is basically input-1 and input-2

the two sources will be scanned one by one, and then the resultant total scanning output

will be stored into the inst. And then that inst can be accessed I can read it, and then

finally this inst can be display on the screen.

Now, here is basically inst, which is basically the result of sequence input stream, and

then will be displayed on the screen. So, it will see the input 1 dot txt, and input 2 dot txt,

the two content will be displayed on the screen. And finally, we close all the string in

input-1, and input-2 from our system quick.

(Refer Slide Time: 39:31)

As you see here the output as it is shown here, this is a input this is a input two one. So,

actually this is the content in the input1 dot text and this is a contain input2 text. So, two

files are sequential accessed one after another, and it is basically displayed on this one.

(Refer Slide Time: 39:49)

So, this is the one usage of the sequence input stream class. Another one application of

the sequence input stream class very same concreted margin. Here actually we (Refer

Time: 39:58) not stored into the third file. When this program will basically tell you, how

the merging result can be stored in the third file is the same as this one. And file1 and

file2 just like input file1 input file2, and file 3 is basically the target third file is basically,

we will store the concatenation of the two file.

We use the sequence input stream again file 1 and file 2 that means, file 3 will store the

merging of the two content. Now, using the buffer input stream, I can read it and then

display it. So, here basically in buffer, in out buffer is basically file3 and output is output

buffer is basically displaying on the our standard output device.

So, it basically using the by buffer output in form and this program if it is data there, so

the concatenation of the two file the concatenated march result will be displayed from

the third file on the screen. So, this is a program that we have discuss about using the

sequence input stream class example and here is the. So, this is the again program as you

see this is a input this is the same thing that is concatenation of the two input file.

(Refer Slide Time: 41:17)

Now, we will discuss about random access, this is the last content to have the

demonstration. Random access is just different mechanism the totally different, then the

concept that you have learn so far. In some situation, we have to access the file in a

random manner, whatever the things we have discuss that we discuss the file in a

sequence manner that means, one character the next character one by the next byte until

the end of file likely, but here we can read at random.

So, this program can have a quick demo about it. And you can use the file class for this,

so here we just random access file rather. There is a class random access file, which is

defining java dot io file, we have to create an object for this. So, we create the file is that

I random access file. And this file whenever we created, it can be open in any read write.

So, other unlike sequence access, it can be read either read or write, but it can be open

both mode.

Now, here we create the file object and this is connected to the file. So, you want to

randomly access rand data reading, writing on the same file at the same time like. So,

here you see we first write something write character, write int, and write double, and

these are the input that we have to write into this that means, if the file is blank or if the

file is there if we write it from very beginning, it is basically overwriting. Then entire

content will be deleted, and it will store this one.

And here is the file seek is basically positioning the file pointer, so it basically zero

indicates that, it will position file pointer at the very beginning that means, where the x is

now written there. Now, here system dot out dot println file read character that means,

presently seek 0 that means start here. This statement will read x, and then again after

reading x automatically file pointer move to the next one that means, read come here and

read int, it will read this one. Go to the next one, read double, and it will read this one.

So, this is basically reading and writing from the same file as you can see there. Now,

here again seek two as you see that file position will be move to the second location. So,

1, 2, then it will go there. And then again we read int that means, you can read the 555

here. And then file seek file dot length, so file dot length as you know, it will give you

the size of the file.

So, if the seek is go there means, it will move the file pointer to the end of the file. And

at the end of the file write Boolean false that means, we write a Boolean value and the

false. And files seek 4, again we go to the forth position 1, 2, 3, 4 means, it will come

here. Then we can file read Boolean, so read Boolean means it will false and then finally

file close. So, this is basically shows a very quickly shows that how the random access

mechanism can be applied to a file object.

(Refer Slide Time: 44:13)

Now, here is a quick execution of the program, so that we can learn about it. And then

you can see the difference state that it will show here as you see here, this is the first read

integer write, read character, write integer, and then write double, and then again read,

and then again finally go to the file position at the end, where the true is store and we

read tribute and then get it. So, this way we will be able to access the file in a random

way. This is a very small example, we have discussed about it.

Now, I hope you have understood the concept of file input output mechanism in java.

Input output mechanism, it just started here. The more input output mechanism will be

discussed, whenever we will discussed. The graphical user interface concept there is a lot

of input output in a different fashion, the different style we have to follow. But, all those

lesson that we have learned, we will be utilize there. In addition to this also few more in

those context, we discussed ok, we should wait for the next topic that we are going to

cover, it is basically graphical user interface programming our next topics to be covered.

Thank you very much, thanks for your attention.

