
Programming in Java
Prof. Debasis Samanta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 29
Demonstration – XI

So, today we have planned our demonstration based on the lessons that we have learned

in the last 2 modules on multithreading in Java. So, as you know we have discussed

about multithreading concepts and here basically we have discussed about how the

threads can be created and then the process communication among the different threads,

the states of different threads and finally the synchronization aspects.

(Refer Slide Time: 00:35)

So, in today’s demo we will learn everything from the practical point of view, we will

see exactly how thread can be created and then those thread can be executed.

And then we have already discussed that there are 2 ways of creating thread. So, using

thread class and runnable interface. So, we will learn about this the 2 things the 2 ways

of creating the threads and running them and there are different methods to control the

threads. So, there will be sufficient demonstrations on them. So, that we can learn about

what are different methods to control the threads and then for the inter process

communication again, there are few methods we will see exactly how this inter process

communicating methods can be invoked for the threads and then again the thread can be

controlled.

Now finally, we will discussed about one real life example is very small example. So

banking transaction so how the transactions in a bank right for the operation of an

account holder can be managed and that is the using threads itself. So, this is basically by

the process of synchronization. So, we will discuss about this things.

So, let us have the demo on these aspects. So, first we have let us have the demo on how

we can create a thread using thread class.

(Refer Slide Time: 02:15)

So, in this program as we see we see here this program if you see here we have created 3

threads namely here, we have created 3 threads as we see threads A and this is basically

extends thread A, this means this basically threads using the class threads and so creating

a thread means, you have to override the run method and as we see we have overriding

the run method here and this run method is basically as we see from this code this run

method will run for 0 to 5 loops and in each loop it will print the negative number.

So, starting from minus 1, 2, 5 like and next thread. So, it is a thread B again it is extend

the thread class and here also we override the run method these also loops for 0 to 5 6

times and in this loop as we see these method will print the 6, the first 6 even numbers

and similarly another thread, thread C it is also a extension of class thread and then here

the run method which is basically a simple loop here and then loop will run from k

equals to 1 to k that mean 5 times and here it will print first 5 odd numbers.

Now so these are the 3 threads. So, our plan is to run these 3 threads simultaneously now

here is the main method and in this main method, we see how we can create the 3 3

thread objects A, B and C these are the 3 thread objects for the 3 classes like thread A,

thread B and thread C. Now this is the syntax as you see how we can create the 3 thread

object for the 3 thread classes that we have defined here. Now in order to run the thread

so we have to call the method start for each thread object for example, a dot start this

means that thread A will run b dot start that this will run c dot start this will run.

So here, in this main method as we see so these are the 3 threads we will run, but in

addition to the main method itself is a thread. So, all together here actually 4 thread will

run. So, this is the thread a will run this means this thread will print the negative numbers

thread B when it will run it will print odd even numbers thread C will run when it will

print the odd numbers and here this main thread other than this executing or invoking

this threads, it will also print this statement and we are not sure the which thread will be

executed in which order because here, the scheduler will take all the threads and

depending on it is own because, here no priority has been assigned actually all threads

are in random pattern, it will be executed. Now so this is the program.

Now, we can have some idea about how this program, if it run then how it will give us

the output. So, name of the program and we have given here demonstration underscore

11 1 ok. So, this program is now compiled and then we are running this program and

yeah as we see these program, it gives the output here multithreading is over this is

basically from the main thread and here you see thread C thread B A B B they are

basically in random order somehow thread C which was (Refer Time: 06:05) invoked in

the main method last, but it got executed first and then B A B in inter living manner and

we see all thread when they are executed they are printing their number in that order of

course, in the way the loop will executed.

So, this basically example gives that how the different threads will be executed and that

is the execution of the 3 threads. Now let us have another demo.

(Refer Slide Time: 06:35)

 So, in this example we have created 3 threads using class thread that is the extends

thread now there is an another way of creating threads and running them using the

runnable interface. So, this is the program which basically gives us an idea about how the

same problem, which we have implemented using thread class can be also implemented

using runnable interface 11.2 ok.

(Refer Slide Time: 07:09)

Now so this is the example what we can see here how the thread can be executed using

runnable interface. Now let us see we define thread X the another thread which

implements runnable interface. So, implements runnable; that means, we want to create

the thread using runnable interface.

In runnable interface there is an abstract method, which is basically run. So here,

basically implementing means we have to override the run method. So, this is the code

that basically implements the run method and this implementation is same as the thread

A extends thread class, in the last example similarly thread Y is the same version of

thread B and this is the implementation of run method for this thread X and similarly this

is the implementation of run method for thread Z, it basically implementing runnable

interface.

So, as we see there are 3 threads we have created using runnable interface. Now let us

see how we can create the. So, these are the basically class declaration for the 3 threads

and now this is a main method, this method is basically creates the 3 threads as we

defined thread X thread Y and thread Z. Now here, you see first we create a X, it is

basically the object of the class thread X and then we create a thread of that objects. So,

this basically t a t 1 is the thread object for the class thread X.

So, to use it using runnable interface method we have to have this syntax like thread t 1

that mean t 1 is a thread and we pass the thread class that is the x object, which is

basically implementation runnable interface actually and then so these basically, create

the thread t 1 for the thread X likewise, these basically t 2 is the thread 2 for the class

object y and thread thread Y actually and this is the another way short cut method also

we can use.

So, t 3 is the thread object new thread and in this constructor. So, there are different

constructor as we see to create the thread, this is the one constructor where you have to

pass the object of the thread, but here we can pass the constructor directly. So, this is the

another way that the thread object can be the thread object can be created. So, these are

one way of creating (Refer Time: 09:51) actually anyway either these way or these way

you can do whatever it is there.

Now so we have created 3 thread t 1, t 2 and t 3 and now we are in a position to run

them.

(Refer Slide Time: 10:03)

So here again, we run t 1 start, t 2 start, t 3 start means 3 threads are now started invoked

for they are running and then this is basically the statement which is basically in the main

statement basically, the same program that we have done using thread class, but here

only the difference is that we have done the same thing using runnable interface and

definitely it is basically same program, but implementation is different definitely they

will give the same output. Now let us see the output of this program ok.

(Refer Slide Time: 10:39)

So, this thread as you see X Z Y Z all this things run in an inter living manner, because

whenever the thread is executed they are basically executing parallely, but here in our

display we are our producing the output synchronizing. So, better can be that if we have

the three display unit for each display the different thread can produce their output then

we can see that how the 3 threads are running independently rather, but here is basically

we are producing the output from the 3 threads on the same input same output screen.

So, that is why we are getting the output in the inter live manner. So, this is the way of

creating threads, we have learn about we can create threads in 2 ways using the class

thread and the runnable interface.

(Refer Slide Time: 11:29)

Now, our next illustration is basically to every threads, whenever it is in execution from

the program point of view we can get have information about the threads by means of

their identity. So, the I d of a thread can be accessed by a method called the get I d,

which is defined in the class thread in the Java dot lang dot methods class. Now here, let

us see one example as we see here now. So, these basically this is the name of the class

that we are going to declare is the thread I d thread I d is basically extend thread always

whenever you have to create thread class you have to have an extension or either thread

class or implements runnable interface that is the basic concept of course,.

Now here, the run method basically thread has it is own abstract run method, but

whenever you have to extend it we have to basically implement override this run method.

Now this run method is very simple here basically it include one print statement which

print the thread dot current thread the; that means, whichever the thread is in execution it

will basically for that thread and then dot get I d means for that thread the I d and it

basically it will give the things that which is a current thread is in execution and

corresponding to that thread, what is the I d will be displayed and print and so this is

basically, under try and catch exception to handle the exceptions if any things occurs

whenever this program is in execution.

Now here is the main method here, we can see in this main method there will be in fact, i

equals to 0 to 8; that means, 9 9 threads will be executed we are basically running for the

same class thread I d, but 9 occasions. So, the 9 thread will be executed and here

although we are calling in this way, but whenever these threads are in execution they will

be executed simultaneously in parallel.

So, concurrently so these basically, it creates a thread in each loop and then that thread is

basically executes. So, this actually these way the nine loops will be created 9 threads

will be created and then each thread will be executed. So, this is the basically idea of the

program and in this program as we see the output this program will see you will display

the output whenever is thread is in execution and corresponding to their I d.

(Refer Slide Time: 14:07)

So, as we see here thread that is I 1 is running thread I 5 is running I 4 is running now at

we can see 1 to 9. So, 9 threads are basically in execution. So, this way we can see the

threads are executing in parallel, but it is not sure if we run this program again not

necessarily in the same output will be let us run the same program again as we see

possibly it will give you the different ordering of the execution as we see here in this

case; obviously, in the but here in the last 3 we can see the different ordering. So,

ordering is in fact, provably stick or it is not predictable rather unpredictable ordering

actually anyway. So, this is the idea about as we see is a simple example where the, I d of

the thread can be can be access whenever a thread is in execution.

Now, our next execution next program basically the same, but using runnable interface.

(Refer Slide Time: 15:07)

As we have seen in the last program, we have created the thread class, you have we have

extended the thread class again the same program as we see here using the runnable

interface same code, but only the implement this is a different and here again as usual.

So, this is also different because in order to execute or in order to create a thread which

has been implemented by runnable interface. So, this is basically the structure of syntax

that we have to follow and then we have to just as in the thread class we have to just

invoke the start method for each thread to run it.

So, these will create one object each time the loop will roll and then it basically start

again the same output similar output as in the previous this illustration we will be able to

see it. So, here is basically we are running the program here threaded. So, we can see the

similar kind of output as we can see you can see the bigger screen so, that we can see it

clearly? Yes ok. So, this is the basically output as we see. So, here basically in the

different order as we see this is basically same program same logic, but that logic is

implemented using implement using runnable interface ok. Now our next illustration to

express, the different states of a thread and as we know the different control by which the

state of a thread can be managed.

(Refer Slide Time: 16:51)

For example, there is yield method, stop method, suspend method, resume method, sleep

method, whatever it is there.

Now in this example, we will just see exactly how the sleep method will work for us and

then stop method also we will see yield stop and then sleep these are the 3 methods we

will see how this methods can be invoked for a for a current thread under execution.

Now here, is the code as we see we create class A extends thread and here we again

override the run method it is the simple print statement that from which state these thread

in execution. So, it keeps that start from thread A and this is basically the loop here we

see for i equals to 1 i less than 5. So, 1 to 5 this loop will roll and if i equals to 1, the

yield method it will be there. So, then system dot out dot print from thread A i plus 1 it

basically, print the value of i.

So, yield method is basically tell that this thread is in execution. Now here again class B

extends thread as you see the similar structure of the program code here in this run

method as well as, but here j equals to 1 to j less than 5, this run method also will loop

will roll for 5 times and here whenever j equals to 2 it basically stop; that means, these

thread will be after the running up to 1 1 and 2 from 2 for the third loop one was it will

basically stop and then stop for sometimes until it will stop means it is totally stop this

means, these thread will no more execute; that means, these loop will although for roll

for 5 times, but it will ultimately work for you only for j equals to 1 only.

Now, here again class C this is another thread we have created here similar run method k

equals to 1 to 5 and here we see when k equals to 3 we call the sleep and this sleep is 30

30 1000 millisecond 1000 millisecond means one second like. So, this sleep this thread

will sleep for 1 second; that means, it will roll k equals to 1 k equals to 2, whenever k

equals to 3 for sleep 1 second and then again it will roll for 4 and 5.

 (Refer Slide Time: 19:29)

So, these are the 3 thread classes we have created having their own mechanism and now

we in the main method, we can create the 3 objects of this 3 thread classes t 1, t 2, t 3 and

then we just start their execution here and then finally, one the thread is finished it

basically print that end of the thread execution, but as it is here in this main method

actually in parallel 4 thread threads will run concurrently. So, this is the idea about 3

threads here and here is the again output we can see how this program run fine. So, these

are warning we can ignore the warning yeah.

So, as we see the output seen here, here, here ok. So, end of execution somehow it is the

last statement, but it is the one main thread somehow it is executed first and then thread

C, thread B, thread B in a random fashion as we see the different threads executed and

also we can see the second thread, thread B actually as it is run it is basically stop for

thread 1 right for the loop and for the 2 4 6, it is basically running. So, this is the way it is

basically it works for us

Now, let us go to the program here the program which we are discussing. So, what

essentially the multithreading basically it is there. So, as we see each thread has its own

code. Now again for example, say suppose we want to run 2 methods, one method will

be for sorting some array of elements and another method for searching some elements

in a array. So, what we can do is that, we can create a thread for the sorting method

implementation we can create another thread for implementation of searching method.

So, whatever the logic there is to sort some array or elements we can write the code

under the run similarly, whatever the code that is required to search an item in an array

we can put into the run method.

So, this is the way that we can run our own what is called the algorithm the method and

that those algorithm can be executed in parallel. So, parallel execution means that they

will share the system may be in a time sharing basis or in a multi programming basis that

is the part of the operating system. So, operating system; that means, here Java run time

manager will manage the execution of all the threads in parallel. So, this way actually if

we run says sorting and searching one by one. So, this may takes a 5 plus 5 10 seconds.

(Refer Slide Time: 22:07)

But, if you run in parallel it may take 5 seconds both the program will run, but it will the

maximally utilize the CPU resources other resources, those are required in your program

execution can be maximally utilized. So, this is the purpose of the thesis purpose of the

threads execution.

Now, let us have the another example as we have learned the method yield stop and then

sleep likewise there is some other method also like suspend and resume method. So, this

examples basically explain us how the suspend and resume method work for us. So,

suspend method means if you write if you can wait make a c thread wait by calling some

method right then suspend method is basically ok. Any one method is running and you

can call the suspend method that mean this thread will be not permanently stop, it will be

temporarily withheld and the same method can be again revoked if we call the resume

method.

So here is a program, which basically explain that we suspend one method thread and

then the same thread can be resumed from the other thread exactly. So, here is the code.

Now here, you can say thread 1, we create 1 thread and this is a run method is basically

simple it is state that print a print statement that this thread starts running and then here

the sleep method we call here sleep for 10 seconds and then the system dot out print l n

the first thread finish running and then this is the thread 2 and here again the similar kind

of code here is basically thread we call a method suspend and then the 2 threads are here.

So, the threads this whenever the 2 threads are a in execution, one thread will sleep for

10 milliseconds another thread will go for suspending.

Now here in the main method, as we see we run the 3 2 threads first and second namely

here and then start it and then execution. So now, let us have the code for that quickly,

yeah as we just output is little bit bigger so that we can see output (Refer Time: 24:25)

fine.

(Refer Slide Time: 24:27)

Now here again, we see the output as we see these are the thread was in executions. So,

sleep and that is why after ten second this sleep this thread actually revoked and then it

produces the output like this one.

So, you can see that how the suspend and then the sleep the similarly resume method

also we can call the resume method in the main method after sometime the resume

method can be called so that it can resumed it now. So, this is the different method to

control the thread. So, is basically mechanism the way that different thread can be

controlled. Now here, we have discussed about a priority can be assigned among the

threads.

(Refer Slide Time: 25:09)

Suppose, while in the execution we can set some priority to the threads as we have

discussed about there are 3 priority min priority, max priority and normal priority.

Now, the thread we can assign priority values to all these threads here now, this program

will explain how we can create 3 threads and among these 3 threads we can assign the

priority. So, class A is a 1 thread, this thread has a simple loop i equals to 1 to 5 and then

this is the simple loop execution it will print the 3 5 numbers actually 1 to 5.

Similarly class B also similar it will print same numbers 1 to 5 and class C also same. So,

both the threads are basically similar form of executions. Now here as we see in the main

method as we see in the main method, let us look at the main method we created 3 3

threads t 1, t 2, t 2 we create 3 threads t 1, t 2 and t 3 here for the class thread a thread B

and thread C and then here the method set priority which is defined in the class thread

and then we plus argument as thread dot MAX PRIORITY, this value is already defined

in the thread class.

So here, basically this basically t 3 has been assigned the maximum priority and as we

see t 1 has been assigned the lowest priority and here t 2 the set priority get priority,

whatever the priority of the thread at present it is basically plus 1. So, it is a random

priority then 3 threads are executed invoked and then finally, the main thread it is there

Now, we will see. So, the order actually whatever it is there or you see the max priority

having the thread t 3, it will be executed first. So, scheduler will know from this

information that which threads needs to be executed first. As we see here because, t 3

because t 3 the thread C namely having the highest priority and as we see here basically

it basically invoke first then B and then A and B they are basically random priority based

on and they have been executed. So this way, we can assign the priority to a thread so

that the execution of thread can be further controlled.

(Refer Slide Time: 27:53)

Now so here is another problem, this is very interesting problem multithreading works

good usually first, but if you are not careful then you may not get the right result, now in

this regard there is a problem. So, for the concurrent program execution is concern it is

called the race problem, the data race problem. Now if you see the code here, now this

code is very simple as we see it declare one integer as a static x and the run method is

basically overriding the class method here and here we see x equals to x plus 1 x equals

to x plus minus x minus 1.

Now after the end of the loop if we come here. So, what will be the desired output?

Output will be 0 if x is initialized as 0 is not it, but here we see whenever we run this

program it may not produce the result 0 always this is because, it is an intermittent way

this statement will be executed by the scheduler in a different way and that is why it is

not atomic. So, if rather non atomic the execution. So, whenever we run this main

method I mean run this loop for say here 1000 times and each time not necessarily 0

output will be produce, it can produce non 0 output as well as.

Now, let us see the execution of this program, but in the different instances if we run the

different program, it will produce the different result.

(Refer Slide Time: 29:37)

 So, if basically 1000 output has been printed on the screen as we see all 0 0, but here

one is there and if we go little bit also top also as we going here may be that sometimes it

is there. So, these are the, this is not the right output actually we can say the erroneous

output and it may produce 0 time most of the time, but sometimes it can produce the

value 1 because of the data race.

(Refer Slide Time: 30:11)

Now, data race because this is the program those are the thread under execution, they are

not synchronization under synchronization means whenever one thread is in execution

then other threads should not be executed simultaneously having accessing the same

variable here, we have made the static variable basically the different thread takes the

same value on their own execution that is why the data race is coming. Now this is a one

example which can better explain in our real life situation the data race condition.

Now this program, we let us have the discussion on this program then I will explain it is

execution and then the in inherent what is called the point in it. As we see here we first

create a account, this account has 3 fields balance and account number 2 with 2 fields are

there and one method display balance. So, a very simple class declaration as we declared

here. In addition to this these method has one method is called deposit. So, it basically

deposit certain amount here into this account.

So; that means, whenever this method will call the balance whatever the current balance

will be increased by the value of amount. So, this is the code it is there and finally, it will

print the display balance which will declared here. Similarly there is another method that

we have declare here withdraw and it basically once amount will be requested for

withdraw will be deducted from the balance and after the withdraw is over it will

basically display the balance information.

So, these basically a simple one class method this is just regarding an account holder

information; that means, the account holder the name or name is not there account

number is here balance is there and the balance information balance status and if the

account holder wants to do a deposit. So, he will just call this method or he if we want to

withdraw something, you will call this method and this method will be executed there.

Now, here is a question point is that if suppose two customers having the same account

number join account number may be they want to issue the two method deposit withdraw

or deposit again or withdraw or whatever it is there from the two different terminals then

they will be executed from the server point of view. So, it is basically executed as a

thread. Now again, just like a data race if it is not properly synchronized then these may

leads to the erroneous result say balance is 1000 deposit 500 and withdraw is 300 the

result may be sometimes 1300 or result may be sometime 700 so, is not total correct.

Now here is basically the remedy, remedy is that if we want to make the two method

synchronized by force then we can create the synchronized q r. So, once the

synchronized q r is placed then this deposit and the withdraw will be control in a

synchronization that mean only one operation either deposit or withdraw will be

executed not the two operations can be executed in concurrent in parallely.

Now having these are the class information. Now here is basically two methods, we

declare as a transaction deposit basically in order to access the account having the

transaction here. So, integer amount this is the account that mean which account the user

wants to access and this is basically the code for this one and finally, these transaction

deposit will be executed in parallel. So thread so these basically creating a thread for

accessing this deposit method.

 (Refer Slide Time: 34:05)

Now, similarly now, similarly there is a transaction withdraw in the same structure as we

see here it basically create a thread in this case and then this thread will be again can run

concurrently with the transaction deposit. So, these are the two threads in this program.

So now, after the two threads are there, this is the main thread this main thread is

basically execute the 2 threads that we have created here as we see we have created an

account information that mean an account is created this is the account say name of the

account B A B balance is 1000 account number is this one and here actually you see t 1

and t 2 the 2 threads are created.

In this case from the same program, but whenever the distributed (Refer Time: 34:50) is

there these 2 thread can be executed from the different client and it can pass through the

server you can understand that this is basically the request to the server from the 2 client

that mean execution of 2 thread t 1 and t 2.

Now if these 2 threads are to be executed by the server in concurrent then definitely data

race may occur, but here these thread are created or called for with depositing 500 and

withdrawing 9 900 and then what will happen it will give always the correct result. So, in

this case 1000 is the balance and after we depositing 500. So, total 1500 then after

withdrawing 900, it basically 600. So, this is the output as we see as we see here. So, 500

is deposited this one 900 withdrawn 600. So, this is the correct result.

Now, I can run the same program, but removing the synchronizations it will run again

just quickly we just, but in some situation may not always it can give erroneous result.

(Refer Slide Time: 35:55)

 Now here, we can see yeah so, this is the right output as we see here just bigger. Now

see in the first execution the output was correct, but whereas, these execution the output

was not correct in that sense because, they are not executed in synchronization if the

amount is different you can get the another result also like this one anyway. So, these

basically shows that how the synchronization can help us to synchronize the program ok.

So, we have learned all this topics here and go to the yes fine, but the thing is that this is

just only tip of the iceberg, we said say there are many more things that you can consider

while you have to practice it more programs are there from the website link, which you

have mentioned very beginning, you can follow many more programs, you can access

from there and you can run those things there, if you have any doubt any query you are

feel free to ask us.

Thank you very much.

