
Programming in Java
Prof. Debasis Samanta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 28
Multithreading – II

So, in the last module related to the multithreaded Programming in Java we have

discussed about the basic concept of Multithreading and then how the thread can be

created in Java program and then how the different threads can be executed in parallel.

And in the last discussion we have used the class thread to create our thread. Now in this

discussion we will discussed about how the Thread can be created using the Runnable

interface the procedure is very similar to the Thread class creation only few minor

difference is there.

(Refer Slide Time: 00:53)

Now, let us first start with how we can create a Thread using Runnable interface. As you

know if we want to create our Thread using class Thread so, we have to create a Thread

class which is basically extending the class thread. On the other hand the same

procedure, but here we have to create a Thread class which implements Runnable. Now

implements Runnable means in the Runnable interface the method run method is there

which is the public and abstract method these method needs to be create. So, it is

basically implementation of this run Thread is similar to the implementation of run

method that is there in the Thread class here.

So, in that case the Thread class run method they are in if you have to extend Thread

class is overriding, but here the run method is to be implemented. Once this class Thread

class is created by Runnable interface then we can create a Thread objects for example,

here T is the Thread objects and when you create the Thread objects you see we use the

Thread class and pass these as a parameter. So, the my Thread that you have created a

new my two all object is need to be pass. So, this is the only difference that you have to

these.

In other cases if you use the Thread class so, Thread to new Thread no argument to be

passed. So, the only the default constructor will take place, but here in this if you use a

Runnable or implement the Thread class using Runnable interface then that object needs

to be passed here, that is the only difference otherwise everything is same basically. So,

here T dot start is basically to start the execution of this thread. Now it is basically same

again that this is the run method that we have to define as it is we have defined there in

the creating clays using extension of the Thread class and then T start.

So, both the things are here again, now let us again repeat the semi same procedure that

we have discussed about in ok. In our last module exam example we have consider about

3 threads Thread a, Thread b, Thread c, which basically p negative number, even number

and odd number. The same concept here also we are we will just implement each, but

using Runnable interface so, that we can understand that how the two things are work for

us.

(Refer Slide Time: 03:22)

So, here exactly let see this is the Thread X I have given the name Thread X in this case

implements Runnable. So, this is the similar the run code that we have used earlier and

then Thread Y same as Thread b that we have discussed here, but it implements

Runnable run method here.

(Refer Slide Time: 03:48)

So, ThreadX. ThreadY are declared and then it will implement the Thread Z. So, this is

the ThreadZ. So, 3 Thread ThreadX ThreadY and ThreadZs are implemented. So, created

we can say 3 Thread class are created by implementing Runnable interface and this is the

main method as we see here these are main class and here you can see we create x y and

x and y are the Thread object of this Thread x class. And then Thread is basically created

t 1 by passing this x because, if we use a Runnable interface that object needs to be

passed as a constructor to call the I mean Thread class actually this is a constructor that is

defined in the Thread class.

So, these way we can see t 1 t 2 and t 3 as you can see in this case again we can call in

one here actually two step process, but is a single step process that mean we can create

the Thread directly call this these passing these also it is equally applicable here. So,

what we can see here t 1 t 2 and t 3 3 Threads objects are created and one these 3 Thread

objects are created they are ready for execution and these are the basically to start the

Thread we use t 1 dot start t 2 dot start t 3 dot start and then Thread will be run in

parallel. So, this is the multithreading using Runnable interface as we have learned it

here.

So, we can see basically same thing implements versus extends and then just how to

create the Thread object otherwise for the run and everything same in the both concept.

So, the two ways of running multithreading program using extends and Runnable

interface.

So, there is no I mean a such a rule that these was these way the search basically the

difference syntax we can say the different procedure how the different Thread can

executes now. So, we have learned about how a Thread can be created although it is a

simple example that we have considered, but this is the idea about and then it can be

extended to any type of complex there any number of threads can be executed any

number of threads can be then started to execute.

 Now there are many more things are there particularly a Thread can be in a different

states. So, now, we will discuss about what are the different states that a Thread may

have and this is very important because whenever we have to control a very complex

program you should know the different states of a Thread that it may have and then how

we can communicate one Thread to another.

(Refer Slide Time: 06:33)

So, basically the interfaces inter process communication. Now, so, far a Thread is

concerned it has different states like Thread can be in a new states. So, this mean the

Thread is just created and it is yet to start its execution. So, it is a new Runnable. So,

Thread is basically being execution that mean it is about to run and running this is

basically active the Thread is in the execution and blocked somehow Thread need

something or Thread has been stopped or it is slipping so; that means, Thread is in a

waiting state it is called the blocked state and then finally, a Thread can be in a dead

state; that means, when it finished it execution.

So, these are the 5 different states that a Thread can be in this there and there are

different methods by which a Thread can change its state like a new, start, yield, sleep,

wait and notify and other some external events also there scheduler, I O and returning

from run and resume all these things are there.

(Refer Slide Time: 07:51)

Now, let us have a detailed discussion detail account of all this methods which basically

to control the states of a threads are there, now this is a state transition diagram for a

Thread that it may have as we have checked that a Thread can be in a new state. So,

whenever the created and then this Thread can be in a new state this means Thread is not

yet started its execution, but ready to start it execution. Now when the start method is

called then this Thread is basically Runnable, but is a Runnable basically gives to the

scheduler it is basically the Java run time manager it basically all the Threads are now

started it, but is about to execute or run it.

When the scheduler can call it is basically yield and then time slice is allowed to each

state may be in a time sharing manner that the it will share the different resources CPU

all this things so on. So, this is totally is a paradigm of Java run time manager which we

should not bother about anything, but it is basically working like this one. So, whenever

it is there so, it is a running. So, there again once the Thread is running that Thread can

be stopped or can be resumed or it can be terminated or suspense so, it is basically

terminated.

 So, once that terminated the Thread will go to the dead state otherwise if the Thread is

waiting for any resources in that it required may be Thread is waiting for some other disk

or memory that it is waiting. So, these are the running to it can go to the waiting state.

So, blocked in a running to waiting state the different methods it is there I O request

sleep, wait, join, suspend these are the methods which can change the state from running

to block state. From the block state it can again Runnable different methods, which are

responsible to move a state from blocked state to Runnable states are here.

So, these are the way that the Thread can change from new to dead state and the different

process are there. So, this is basically state run transition diagram says that how the state

of a Thread can change and what are the communicating methods are there to control the

execution of a threads and then Thread can be in a different state.

(Refer Slide Time: 10:02)

So, these are the different methods that we have learned about start method we have

already used it and then suspend method. Suspend method is not exactly the stopping

stop method means the Thread will be dead, but suspend means it will temporarily halt

the execution and then if the a Thread is suspended by the calling suspend method it can

be again revoked using resume method.

Now, resume method is basically when the Thread is in waiting state or in a blocked state

it can be turn into Runnable state. So, the schedule scheduler can take all the threads

from the Runnable state to assign to the CPU for execution and then sleep method is

basically by explicitly maintaining that Thread should stop it here wait for some seconds

may be n milliseconds like where the argument is n there. So, sleep means the Thread

will not do anything only the sleep for sometimes and yield method is basically switch

that takes from the context of a Thread from the current Thread to the next available

running Thread that is there Runnable thread. So, it is basically usually this yield method

used by the scheduler to invoke a Thread which are waiting ready for execution that is

there in the Runnable state.

(Refer Slide Time: 11:25)

Now, let us see how the threads scheduling can be done.

(Refer Slide Time: 11:27)

And Thread scheduling can be done there are actually scheduler though scheduler is

basically responsible for scheduling a Threads; that means, scheduling a Thread means it

basically assign Threads to Java run time manager and is basically determines that which

Threads which are there in a Runnable state can be assigned to the system for execution.

Now, again in the Java system we can assign the priority low, mean priority, high

priority, max priority like. So, according the priority scheduler will call revoke a method

Thread from the Runnable state to this one and there are some threads we call the demo

thread. So, demo threads are basically running all the time in the system and then

scheduler can interact with them so, that they can be executed and then they can be

control their execution and they the Thread can be in any other states there.

So, the demo Daemon Thread is basically for the general service whenever suppose you

just insert one disk. So, automatically it detect that disk is there whenever some

interrupts are coming the daemon Thread will take these are the few examples are there.

Now the program can be terminated whenever all threads are finish its execution if there

is some Thread is yet to be executed the program cannot be terminated and then we have

to do for the force termination by pressing power button or like this one.

(Refer Slide Time: 12:58)

Anyway so, whenever the scheduling of a Thread is concerned again in the system there

are two type of scheduling called the pre- emptive scheduling and non pre-emptive, non

pre-emptive means one the Thread is in execution if it is a non pre emptive scheduling it

is followed then this Thread cannot be interrupted until it finish it will start it execution.

So, no it cannot be interrupted whereas, the pre emptive scheduling means, Thread is in

execution, it can be pre empted may be either can be change its state from running to

waiting state or sleep or whatever it is there.

(Refer Slide Time: 13:38)

So, it is basically the policy how you want to control the threads in your execution. So,

this is an idea about the pre-emptive scheduling that it basically. So, whenever the

Thread is in running condition, it will either terminates or it will go wait or ready wait or

ready until it finish it execution. So, this is the idea about the pre non pre-emptive

scheduling; that means, it will no interaction interruption is allowed in case of non pre-

emptive scheduling is there on the other hand in case of pre emptive scheduling as we

see.

(Refer Slide Time: 14:23)

As we see the pre-emptive scheduling is basically if there is an interruption occur. So, it

basically not wait it will from the run state to go to the ready state. So, this way pre-

emptive is occur anyway. So, this is the matter of policy that you can implement in your

system and this is the concept of idea about managing the systems whenever you have to

implement it. So, pre-emptive non pre emptive the core concept of how you want to

control your process in execution or we can say the Thread in execution.

(Refer Slide Time: 14:56)

Now, let us have an example how the different methods are there which can be implied

to a Thread whenever it is in execution, this is again simple method that we can

understand about it and it illustrate how the sleep method will work for you. So, here is

an example we can see we create a Thread class the name of the Thread class is

ThreadExample which basically created using Thread class. So, extends Thread now I

can tell you using implement Runnable also you can do it anyway.

 So, here is the run method as you see how we can code the run method then this one it is

basically is a loop for loop and here you see sleep we use the sleep method for this that

mean whenever it executed this for i equals to 0 it will just call the sleep method and it

will sleep for 5000 millisecond. So, 5 seconds like and we put this code into the this one

because here there may be an exception occurs that 3 Thread is no more there and then

we want to call this Thread using sleep method. So, this is why it is better to put under

try catch. So, it is basically interrupted exception if it is occur then it can caught it and

then handle from the premature termination of the program itself or the robust program

this is basically exception handling concept it is followed there.

Now, as we see. So, this is the run method this run method is just run the Thread and here

the idea is that Thread will for each loop whenever it run. So, first 5 second it will

sleep then again 5 second it will sleep and then another 5 second it will be sleep like this

one. So, it is the idea about sleep there and if you print one system statement system dot

out dot print l n before here and after here that before sleeping first and then after

sleeping first then you can see that. So, the threads are executed in parallel wherever it is

sleeping intermittent way.

So, here is basically the idea about here we can see we have created two Thread

ThreadExample object and then start there so; that means, we run two threads parallely

and if we run this threads parallely with their print statement here in our demonstration

we will give a demo how this Thread can execute in a different order and everything. So,

this will give an idea about that the threads are running and invoking the sleep method;

that means, Thread is going to the sleep there. So, basically here the threat Thread that

we have created here we are sending a method to control or just change its state from

may be running to waiting state like this one or blocking state whatever it is.

So, this way the sleep method like this sleep method we can use many other methods as

we have discussed in previous slides namely, suspend all this things stop all this things

also we can call it here. So, appropriate code is to be planned for that to have it anyway

we will discuss all this things in our demo. So, that how the different methods can be

called and then how their consequence is there.

(Refer Slide Time: 18:20)

Now, so, this is an example again we will discuss the portal execution of this statement

how this state can executed when the sleep condition I want to skip here. So, for the

theoretical it is more aspect. So, far that how it basically run, it in actual programming

environment ok. So, this is a Thread control we can say and these are the basically the

matter the concept or the features.

(Refer Slide Time: 18:49)

So, for the inter process Thread communication is concerns here and this is an another

example of again inter process communication of the Thread as we see and this is very

interesting problem which usually occurs whenever multiple threads are in execution the

concept is called the DataRraces. So, here is basically we create one class called the

DataRrace which extend the Thread class here and here we declare one method run

which use one static integer variable x there. Now this method is basically use

interchangingly for integer i equals to 0, i less than these are basically. So, many times

this will loop and for each iteration x equal to x plus 1 and x equal to x minus 1 as if this

loop is executed.

So, for every iteration x will be initially if x is 0. So, it is 1 then 0 1 and 0, but

interestingly if you run the Thread this DataRrace Thread and you see it it should in this

according to this one single Thread it will always keep the 0 as a value of x, but here the

thing is that because of this intermittent execution and then what is called data races are

there. So, if we run this Threads for this many loops and you will see it always not give 0

it sometimes keep 1 sometime gives 0, this is because the different Thread whenever it is

execution and it is a static variable.

So, it print the different situation whatever the values are there in this intermittent

execution. So, this is the idea about and then and it basically call the data race example in

the Java programming concept. So, this basically says that, how the different threads are

in execution that we can check it within this kind of illustration.

(Refer Slide Time: 20:47)

Now, so, these are the different way the Thread can be scheduled our Thread can be

communicated inter process communication we can say and now next is that a Thread

can be synchronized also. So, the Thread synchronization and before this Thread

synchronization, there is also one concept is called the setting the priority our next

example is basically how the set priority of a threads can be established so, that the

scheduler can schedule the execution or the Thread according to their priority.

(Refer Slide Time: 21:23).

Now, so far the priority of a Thread is concerned there are three different priority that can

be there in the Thread MIN PRORITY, NORM PRORITY and then MAX PRORITY. So,

they have their global value called 1 5 and 10. So, we can set the priority of a Thread by

calling this method set priority which is defined there in class Thread. So, if this is the

Thread and then we can call this method setPriority and passing the num number 1 5 or

10, then it will set the priority according MIN PRORITY NORM PRORITY or MAX

PRORITY, otherwise you can write this one min priority the global variable declared in

the Thread class itself. So, we can use it also.

So, a Thread can be assigned its priority and once it is assigned then the Thread can be

served using some CPU scheduling policy for example, FCFS First Come First Served

policy look like this one. So, there are the way that the Thread can be there now let us

have a example.

(Refer Slide Time: 22:32)

So, that how this Thread can be priority can be assigned and accordingly the Thread

execution can be controlled. So, here is an example for this. So, here class A we create a

Thread and then run method we define here run method has a loop and this is a loop

control variable i equals to 1 to 4. So, loop will roll for times and each time the loop is

rolled it will print the value of i here; that means, loop variables. So, this is the Thread A

and similarly this is the class A basically one Thread that we have created, now let us

have some more Thread because multiple Thread execution is more interesting.

(Refer Slide Time: 23:18)

So, here is the another example and here is a class B another Thread that you have

created this also similar to the class A Thread, but it just printing the variable the loop

variable of its own. And so, this is the class B and similarly we can define another class

say class C say another Thread.

(Refer Slide Time: 23:38)

And this is a class C Thread as we see class C Thread and then this also another a run

method it will print the k. Now we can see we have created just for playing only 3

threads by means of 3 classes class A class B and class C they are the from Thread class

the run method is created. Now once this threads are created now it is our turn that how

this main class can be can be composed. So, that all this three threads can be executed.

(Refer Slide Time: 24:12)

So, here is a main method as we see as we see here this is the main methods and here we

see we have created 3 threads namely threadA threadB and threadC of the class A B and

C that we have discussed.

Now, once the Threads is created here we see we assign the Priority of the 3 threads like

threadC setPriority Thread MAX PRIORITY and then threadB setPriority threadA

getPriority plus 1, what is a Priority that the threadA Priority is there that by 1. So, this is

the Thread Priority sets and similarly threadB threadA Priority also Thread MIN

PRIORITY. So, these are the different way the Priority can be sets for some different

purpose we have setting this one. So, Thread Priority can be set this way, once the

Priority set we just simply start the execution of this thread and as you see this is

basically start and start.

Now as you see whenever the threads are started it is not started in this way such this is

the first A will start B will start C will start is not that, if you see the print statement and

then in our demonstration we will see how this program gives the print output then we

will see that here out of these which has the first highest priority. For example, here

threadC has the highest Priority it will be executed first, then we see the threadB is the

next Priority because threadA the lowest priority.

So, threadB will be executed and then ThreadA and then then the loop will be in a inter

min low a depending on the Priority the different execution will takes place. So, this way

the ThreadPriority can be set and then it basically used by the scheduler to schedule the

Thread in its own way

(Refer Slide Time: 26:10)

Now, here is a another example the join method we have discussed, as I told you it is

also considered the con. So, if suppose one Thread cannot begins if the other Threads are

not finished its execution. So, in that case the other Threads switch should be waited for

to begin another Threads that can be control using join method here and this is a very

simple example as we see suppose t 1 and t 2 are the Threads are created, then we create

t 1 is a Thread and t 2 is another Thread by means of Thread class somehow created there

and we create by some methods are Runnable interface that is means ok.

So, we have to run implement the two run method by implementing Runnable interface

that can be passed. So, the t 1 and t 2 the 2 Thread object can be created and then they

can be started it execution by calling t 1 start. So, what the thing is that these 2 Thread

will start its execution because of these and then here try catch there is a t 1 join t 2 join.

So, there is a t 1 Thread t 2 Thread and then here t 1 join t 2 join so, it will wait till all the

Threads are finished.

So, then this one then only it will come to this one then it will execute the final

statement. So, join is basically the idea is that if there are many threads are there if we

the join. So, all the. So, here the Thread point execution will wait until all threads are

finished it execution come here then the next task will takes place there. So, this is the

concept of join is basically communicating or the controlling the inter process threads

actually.

Now, our last topic so, regarding this multithreading is basically synchronization of

threads, now the synchronization of threads in means that if two or more threads enter

into same process then it may leads to lot of abnormality. So, what we can do is that, if

we use the synchronizations that automatically the Java run time manager will control

their executions say that no 2 Thread should not access the same data or same section

together that is called the critical section actually those are the students from computer

science they probably know that critical section are semaphore implementation.

(Refer Slide Time: 28:38)

So, it is basically synchronization, it is very simple the methods which we want to

synchronize just use the synchronize keyword before them and then synchronization

automatically take care it is so, easy so, for the implementation is concerned.

(Refer Slide Time: 28:54).

Now, here let us have a very simple example that how the synchronization is there. Now

in banking transaction say suppose one Account where from the 2; one from the ATM

and one from the Bank terminal want to access the same account sometimes, in one

account one transaction one wants to use withdraw and another is to deposit.

Now, if they are not synchronized properly then in fact, it can leads to the different

result. For example, say suppose in the account balance is 1000 and then once a deposit

is 500 and withdraw is 300, if it is not successful then what is the out outcome will be

that either it is ok. So, it is basically the correct output should be 1200 because 500

deposits and 300 withdraw, but if it is not successful then you may get that output as

either 1500 or 700 because of the abnormality the situation is there. This means that both

the execu transaction deposit and withdraw should not takes place simultaneously. Once

if it is not finished then other should not be executed like this one.

So, this is the one example that to this one here basically one class Account that is a

normal class which has some members and methods are there basically balance, account

number and displayBalance and whatever it is there is a very simple methods are there.

And in this Account we define two methods deposit and withdraw and the deposit is

basically depositing the money. So, balance whatever it is their amount it will be

adjusted and withdraw means it will just this one.

Now, here we can see we use the keywords synchronized here this one this means that if

the two methods are called for this class object account then they are basically already

called in a synchronized manner. So, it is right the. So, this class is very simple to

understand and then only the thing that you should use the synchronize keyword here

now.

So, this is the idea about and here is basically the class transaction we can say the

transaction is basically implementation using threading example here we can see, we

implement transaction deposit there are two methods two transaction deposit class one is

related deposit and it basically implements Runnable. So, the run method as we declared

here this is basically the Constructor of this class and then run method is basically right

account X dot deposit basically these run method call this deposit method. So, this is the

TransactionDeposit.

(Refer Slide Time: 31:39)

And similarly the transaction withdraw also another method as we have declared here

transaction withdraw it is a same the Runnable interface and this is a constructor for this

and here is the run method as you see is basically called the withdraw method of these

object account y.

Now, so, the two methods withdraw and deposit being synchronized they are basically

operated for the two operations, now here is the methods the main method as we see. So,

so main method this is the main method as we see the transaction is the name of the class

and the main method it is here its basically for the account class we create an object ABC

and then that balance is 1000 and then we call this Thread t 1 TransactionDeposit

TransactionWithdraw these are the two threads are executed in parallel t 1 and t 2 are the

two threads; that means, here we want to say imply that two executions are invoked at

the same time and then if there is no you can run this program with removing

synchronized what will happen.

And if you run this program with synchronize what will happen you can see readily the

difference, but difference may not be always because the data race example that we have

discussed because of this things it may leads to abnormal results because if it is not there,

but if you synchronize, it always give the correct result all the time.

(Refer Slide Time: 33:08)

So, this is the idea about the synchronized and then again in the stack implementation the

same synchronize also we can used it anyway. So, that stack is basically the

implementation in data structure that is there. So, I just want to avoid this discussion here

we will discuss this things when we will discuss about the in our demonstration who will

have more example and then more execution so, that we can run it.

(Refer Slide Time: 33:38)

And so, this is the synchronization that we can have it and using the synchronized word

that, we can control and then process the Thread execution there.

(Refer Slide Time: 33:42)

So, anyway so, this is about the multithreading the concept is very vast and many more

things are to be discussed in details anyway. So, although we have used the two modules

many more things should be discussed while we will have a quick I mean complete

demonstration on the different aspects of multithreading programming.

So, this is about the multithreading and after the multithreading the next thing is very

important about that how the input and output way program can be handled because Java

is for internet programming and then input and output from the many sources. So, how

Java can manage the different sources of inputs and then so, output also we will discuss

in our next discussion.

Thank you.

