Programming in Java
Prof. Debasis Samanta
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture — 26
Demonstration — X

So, let us have the demonstration regarding the Exception Handling Mechanism in Java.
(Refer Slide Time: 00:25)

B
@ in today's demonstration ...

About compile-time error

About run-time error

Simple Try-Catch block

Try with multiple Catch

Multiple errors with single catch

Finally in try-catch block

Exception handling using Throws statement
Nested try-catch block Re

'+ NPTEL ONLINE DEBASIS SAMANTA

IIT KHARAGPUR CERTIFICATION COURSES e
IIT KHARAGPUR

And today’s demonstration includes mainly the compile time errors, and then what are
the run time errors are there, and then how exception handling mechanism can be
achieved by means of simple try-catch block, try with multiple catch, then multiple error
errors with single catch. And there is another block that can be added with the try-catch
is called the finally, so try-catch finally block in along with the try-catch block, and then

throw and then throw used in exception handling and then nested try-catch block also.

(Refer Slide Time: 01:08)

Fle Bt Seoch View Ercodng Linguage Setiogs Tock Moao R Puges Wdow 7
SHR LB s Dok aaBR 1 EIENee R ER W
FiDerwessoon 1ea 3|
P
2
3 sclass Error {
) public static void main (String args [1) {
System, out . print ("Car nd e:

ing compile time errors in a program. */

")
€ }
}
) aclass AnotherError {
public void insert(){
System.out.print (" t a text");

2

stract void delete(){
System.out,print (" jelet text");

v socec file lengin:533 Ines: 22 106 Col:6 Sal:010

So, let us have the first look about the compile time error. As you know if you run the
program which is not as per the syntax of java programming language. So, the job java
compiler report all this things as an error as we see here in this program here. We can see
lot of errors are there and here we can see in the first statement itself start with error
because java is a case sensitive. So, capital C in the class declaration key work is not

allowed.

(Refer Slide Time: 01:38)

3 sclass Error {
| @ public static void main (string args [1) {

System.out .print ("Can you find

€ }
}
) aclass AnotherError {
public void insert(){

System.out.print (" I t text");
)

abstract void delete(){

System.out.print (" felete a text");

v socece fle ength: 533 Ines|

So, if we run this program as it is a first execution, so compiler will halt it here showing
this error there. So, we will correct one error at a time as we see the compiler will report

the class error here.

Now, let us quickly remove this error now we can see there is more error and public also
capital P it is not allowed, so let us small capital is there and then again error is there, ok.
Let us quick to fix it, right. Public and then system as we see capital S should be there
and then capital S, and then you see all the statement should be terminative semicolon.
So, as there is no semicolon, so we should make the semicolon here again put the
semicolon as we see. So, java compile compiler will compile the program and whenever
it finds an error it will report it and then until this report is fixed, so this program will not

leads to a successful execution of the program.

So, there are few more errors as we see. Any method should not be declared and abstract
inside a class method as we can see here because it is not an abstract class. So, there is an
error, and then there are few more error as we see those basically compile time error

actually.

Now, so after knowing this compile time error let us have the run time error concept it is
there. Our next illustration to explain the idea is about the run time error. So, let us go to
the demonstration 10.2. Here we can declare on class, the name of the class is error and

ok, right.

(Refer Slide Time: 03:22)

- Quick acess

mbsp
' Downlosds #

Docurnents #

| egtrcaae tneszr 21 Golz1 5e:0[0 Windows () UIF-4 " |

As we see this is the one class declaration, let us follow let us have the quick look of the
class declaration here. Now here we can see this program is perfectly there is no
compilation error, as we have compiled it successfully; however, this program will run
but will not run for all. Now, if we run with this one we will see it run for all not for all,

but for some.

For example, for if we run this program with input 1 2 it will run, input 1 2 give, it runs
correctly. Now, 10 20 30, as we see these program will gives an, it is 10 30; 10 20 30. So,
this program also takes this input. Now, what will happen if we give only single output?
As we see it also ok. So, that is a single input in this case gives an error. So, this error is

basically array index out of bound exception array error it is there.

Now, again four 4.5 and 5 the different error it will basically it is called the exception.
Also we can see the number format exception error it is there. Now, we will see these are
not actually errors they are called exceptions because in some situation this program not
able to handle this, and this so program is there is no error in the program rather these
program cannot handle all input that is the cases of exception that is why they are called

exception.

(Refer Slide Time: 05:10)

SHR A GB 4 RD/Pc/a/22BR 1R/ ER = §

ss Demonstration 103 {
static int anyFunction (int x, int y)
int a = x/y;
return a;

public static void main (String args[]) {
int a,b, result;

ystem,out . print ("Ent t t i M

result = anyFunction (a, b);
System.out.println (" t : " + result);

L D0

 Desoop

Doaunents
 Downloads
B Music

s Petres
W Videos
L SAMSUNG 7508

| S — e
0 socefe: lengin:615_ioes: 26 In:6 Col:22 5e:010 Windows RLF) TF8 | 2iems

Now, let us see how we can make our program robust using exception handling
mechanism it is there. So, let us have the first program there. As we see this program

10.3, this program we see there are lot of exception scope of exception as we see for

example, in the statement x; display, display yeah, ok. So, here we can see in that class
demonstration 103 we see a equals to x divided by y. So, there is a scope of an exception
to occur because if'y is 0; that means, any function is called with two arguments with the
second argument is 0 and then again there is a possibility job exception in integer dot
percent in case suppose if we run this with non integer parameter passed through there

right.

Now, anyway. So, this program has that it is, it is if we compile it or definitely there is no
compile time error this means program does not have any error there. So, if we run it for
two it is no error, but if we run with see first argument other than 0 then, ok; 10 and 0 for
example, as we see here two inputs one is 10 and another is 0, because second input if it
is 0 it will basically divide by O or arithmetic exception as we see here arithmetic
exception error occurs here. So, this is a case of exception that we can see and we see

this program is therefore, not so robust.

(Refer Slide Time: 07:10)

Demonstrat 'nn_‘ 04 {
nyFunction (int x, int y)4

int a = x/y;
return a;

cateh (ArithmeticException e) {
System.out.println (" n L

}

return 0;

oid main (String args([]) {

osult; BN - -

I
}catch (Exception e){}
result = anyFunction (a, b);
System.out.println (" ¢ " 4 result);
L } B
) i Petees

B Videos

L SMSUNG 7508
o) ¥
Windows (RLF) TFg | 2imms

| socece fle

g 197 s 34 1n:26 Col:39 Sa:010

Now, towards the implementation robust program we can use simple try-catch. So, this is

the example to show how the simple try-catch can make the program robust.

So, here the point of exception where we just enclose it in the try-catch block, and there
is another source of exception there a equals to integer dot percent they are also source of
exception there. So, we have just put them in the try-catch. Now, this program will run

for any input whatever the input that was not working in for the previous case.

Now, let us run this program with inputs 10 and 0 again. As it was not working there in
this case you see it works there and divide by 0 it reported and then result 0 is return this
one, ok. So, this way we can; so in previous case the program was not program was
abnormally terminated rather, but in this case program run successfully, but exception

which occurs it caught and then handle it.

(Refer Slide Time: 08:12)

¢tk t2BR 1 EIH e EE N WE

¢ class Demonstration 106 {
public static void main (String args[1) {

nt i = args.length; // No of argumel
String myString[] = new String[i];
myString[0]=args[0];
if (args[0] .equals ("Java")) {
System.out.println("

J
System,out.println(" Hur
nt x =12/ i;
int y[1 = {555, 999};
ylil=x

Now, next example is basically, so how the robust program can be developed. Again the
same thing, if we run the different cases we can skip let us go to the 10.6 run the
following program, run the program without exception handling mechanism for some

input.

Let us see have the 106 program there, yeah. 10.6 program as we see here this program
includes again exception in many regions here in the for example, string my string, new
string, I, there is a possibility if i is 0 in all point are assignment and then next if my
string 0 equals, ok. We can write it instead of my string of my string 0 you know you just

write args 0 if args 0; no if args 0 ok, that is fine it will work ok, if args 0.

Now, let us compile this program and as we see it will work for some input, but not all
output, not all inputs, ok. And again if we run this program first say Java input is capital J
a v a. So, it basically run this program correctly and I love Java. Now, let us see you can
see this program is basically start at the point here in the last statement. So, error is there.

It will it will not work for example, now what will happen if we run this program without

passing any input common line. So, just simply run. It is also giving error because array

index out of bound error is there. So, we see this program is erroneous.
Now, let us implement this with multiple catch block.

(Refer Slide Time: 10:08)

sHHRRGR 4 RD(c/ahaaHBE S 1RAPN HEHER =

|t 7]

gs.length Yo of t |
ng[] = new String[il;
[1f HiER mvaitog o pointer error
if (myString[0] .equals (" L) KRV 3)
System.out.println("E W "
1\
System.out.println(" Sl f)g
int x = 12/ i; I
By [NIR=N 2 1
y[il=x; f
}
catch (ArithmeticException e) { // To catch the error at #2
System,out.println (" 1 ")

1

catch (NullPointerException e) { // To catch the error at #
System.out.println ("A r l XC! n:"+e);

1

cateh (ArrayIndexOutOfBoundsException e) {

System.out.println (" ndex SRSEC)
}
)

v soerce e length 11292 lines: 37 In:5 Col: 4 S:0(0

So, this is an example to illustrate the try with multiple catch. So, all the errors all the
exception those occurs there in the program can be handled using try or that means, try
will check if exception if any occurs during run time and then corresponding catch will
catch all the exception and then handle them with their proper code here. Here very

simple code that we have used system print 1 n only.

Now, here there are point one where the error occurs, point two also the error occurs and
point three also the error occurs here. And we just in the process of catching this here
arithmetic exception and then if it is there so first catch is to catch the arithmetic
exception, second catch to null pointer exception, and then the third catch is to array
index out of bound exception. So, this way if we run this program again it will run
successfully, again my string 0 you can check it arg O that is all. If statement, it is ok,

fine,.

(Refer Slide Time: 11:12)

L ERT RS e XL R IR R =R =1 RO

(o]

public class Demonstration 107 {
public stati main (String args[1) {
try {
int

i = args.length; [/ No of ar
String myString[] = new String[i];
f)t myStr no’
if (args (0] .equals (" 3) ORI S Y

System.out.println("

}

catch (ArithmeticException e) {
System,out.println ("
}
catch (NullPointerException e) {
System.out.println ("A r
} B I0Ches © N
catch (ArrayTndexOutOfBoundsException e) { Ku Dessop
// To catch the error at #3 Documents
System.out.println (" 3 3
¥ Misc
}
J i Pictures
) B Videos Demcastatn, 1011
L. SAMSUNG 7508 1) 26, Demo Programsoc

" & Downloads
+

o ogamil) ¢
1n:11 Gol:20 e Iéiems 1 e el

Jengih: 1288 lines:37

So, this program is now robust and whatever the situation happens here in the last case it
was working java all the input it is where, but I love java it was not working there. A null
pointer exception java dot; lang null pointer exception where it is? Ok, you just do my
string whatever it is here, ok. Run this some of here is a program, yeah. So, no compile
time error, yeah. So, there is a error because no input, if we do not give input one error
will be there, if we just simply java a null pointer java dot lang (Refer Time: 12:12),

yeah.

So, it was working correctly; there are some marks there we have resolving. Anyway, so
now, again if we run this program java without any input, I mean this program without
any input common line output these also it will it will catch the exception and
accordingly program will not abruptly terminated. Array index out of bound this is why it

gives the error, fine.

So, let us have the next one. This is also another example that multiple errors by a single
catch. So, this example we can see the multiple errors here in the switch statement
actually, in every switch there is an error is there. And then if we run this program as we
have make the program robust by using single try, but the multiple errors are only one try
and then catch is to handle all the catch here you can see catch exception e because of all

the irrespective of the type of error it will catch it. This is the exception is there.

(Refer Slide Time: 13:26)

o DDemorearatonDemonstration-X\Demonstration_106\Demoreration_ 104java - Notepads + = f
Fle B Seach View Encodng Lasquage Setiegs Tocks Moco Run Puges Wdow 7
HHR LB 4DBdc/aka2BR 1IN R ER W
Eiosmerstaion el
public id main (String args[1) {
for (int i =0; i <4; it) {
try {
switch (i) {
case
int zero = 0;
j = 999/ zero; // Divide by zero

int b[] = null;
j=b[0] ; // M pointer error
break;

case /i

nt c[] = new int [?] ;
j = e[10]; // Array in
break;

case

char ch = "Java".charft(%) ;// String index is out-of-bound
break;
) fon_108
} catch (Exception e) [{

System.out.println(" t "eie "\n");

System.out.println (e.getMessage());

2|}

v socec file

Jengih: 604 e 33

1n:25 Gol:3l Sel:)1 Wiedows (RLP) UTF8

And this program will; ok. If we run it, it in fact for each switch statement case statement

it will face an exception and this accession will caught by the catch statement.

(Refer Slide Time: 13:33)

B 8 Commans ot E—
PECLERT I GET U FIEE =B =1 T CICICE] -TL
| Fosmerson 6 3|

ic void main (String args[1) {
for (int i=10; i <4; i++) {

ry {
switch (i) {
case
int zero = 0;
j = 999/ zero; // Divide by zero
break;
case |
int b[] = null;
j =b[0] ; // Null pointer error
break;
case 7:

nt c[] = new int [
j = c[10]; // Array index is out-of-bound
break;
case 3:
char ch =" ".charAt (%) ;// String index is out-of-bound
break;
) on 100
} catch [(Exception &) -
System.out.println(" t "+i+ "\n");

System.out.println (e.getMessage());

lengih: 804 e 33 In:25 Col:31 Sel: 1)1 Windows (R UTF8

Yeah as we see so all exceptions those are occur in the four case statements are caught in

the single catch statement.

(Refer Slide Time: 13:58)

in =0;
String greetings[] = {" wink o & ik ! |t
while (1<) {

try {

System.out.println (greetings [i]);

i)
Jeatch (Exception e) {
System.out.println (e.toStrin
/ Mes

al));
of exception e in String format
}
finally {
System.out.println (" ™)
if (1< 39); ow
else {System,out.println(" hould quit and t index ") ibreak;)| "

v socec fle engih: 723 e 23 In:1 Col:1 $6:000 Wiedows (RLP) UTF-8

Now, so there is another block that can be added with the try-catch block called the

finally,. So, here is a next program that we can see, ok.

(Refer Slide Time: 14:03)

EEUEETEEE e E R =R =1 PR IO - 1E]
| Eipomerstobon 83|
/* finally in try-c

class Demonstration 109 {
i void main (String [] args) {
int i = 0;
String greetings[] = {" winkle !", "
while (1< 4) {
try { ”
SysLem.uul.p}inLln (greetings [i]);
i)
Jeateh (Exception e) {
System.out.println (e.toString());

// Message of exceptior

1

finally {
System.out.println (" L)) 8
if (1 <€ 3);

else {System.out.println("

Viedows (CRI) UTF

lengih: 723 e 23 In:6 Col:37 54:0]0

We can see the block with finally, so all the exception that can be caught by try here the
try statement and then corresponding catch, and then we add it finally, statement here.
And as we see whatever the exception whether occur or not this finally statement will be

executed and it will accordingly the code will be, code will run and then gives the output.

Now, let us run this program as we see the greetings has the three, so this while loop is
successful for three, first three loops, I mean three iterations 0 1 3, but three for the three
because less than 4 means this loop will roll till 3 and for the last one it will report an
error and then we will see the finally, will print this statement accordingly. So, here we
can see it will print high statement all the time, but the next if 1 less than 3 it will do
nothing but it will be if i greater than 3, ok. So, as we see this is the output here and the
last statement finally, whenever I loops is there fine. So, here we can see that finally
block if it is added with try-catch. So, for every try-catch occurrence this finally will be

executed, this is a main use of the final statement finally statement.

Now, our next illustration to highlights the throw clause in a program and here is

basically the demonstration of the throws.

(Refer Slide Time: 15:35)

tration 1010 {
main(String Args[]) throws Exception{
int[] array = new int[3];
try{
for (int i=0;i<d;++i)
{

array[i] = i;

 —

ystem.out .println (array) ;

1

catcl

dMessage () ;
System.out.pr ¥ + " + e.getMessage()) ;
System.out.println(" ce: " + e.getStackTrace());
System.out.printin();
System.out.println() ;
System.out. i
System.out.pr:

se: ")} e.printStackTrace() ;

: ") je.toString();

o socec fle

As we see as we have discussed in our theoretical discussion a throws clause can throw
an exception explicitly and those exception then can be caught in the try-catch block
here. Now here is a small program segment as we see the name of the class is
demonstration and the score 1010, and here array is a declaration of size 3 and then try
for integer i equals to 0, i less than 4, so 0 1 2 3. As it is a array size 3 definitely for the
first array it is a array index out of bound exception it will be there. So, for i equals to 0

no exception, 1 equals to 1 2 no exception, for i equals to 3 the exception will be there.

(Refer Slide Time: 16:27)

] N
try{
for (int ism0;i<i;++i

{

array[i] = i;
1
System.out.println(array) ;
}
catch (ArrayIndexOutOfBoundsException e) {
System.out.println(" n: " + e.filllnStackTrace());

:: "); e.printStackTrace();

i
ng: ")je.toString():

> inform that we have entered the catch block
System.out.println(" , We went t 5 tt t L
throw (Exception) new Exception().initCause(e);
}
finally{
System.out.print]
//method c: t

}

v socec file lengin: 1137 lines:38 In:15 Gol:dT Sel:3201 Wiedows (RLF) UTF-8

prograr

Now, this exception will be caught in the try block and then catch will do it and here
actually it will see the different methods those are there in the exception class is invoked
here. For example, getCause, then filllnStackTrace, then getLocalisedMessage,
getMessage whatever it is there. So, it is basically the implementation of exception class
in java dot lang throw able package and according to this we can access these method in

our program.

So, this catch whenever it occurs it catch the array index out of bound exception, for that
error it will basically give the all message trace and then regarding the complete
information about the exception that it occurs there via the different methods in that

throw able class. Now, let us run this program and also it has finally method.

(Refer Slide Time: 17:19)

tch example ./

tion 1011a {
id main(String args(]) {

int b = / a; // Divide-by-zero except
System.out.println(" "k oa);
if (a==1)

a = af(a-1);// // Another divide-by-
if(a==2) {

ntcl]l=1{1};

c[2] = 99; // out-of-bound exception, i

B Music
s Petres
W Videos
L SAMSUNG 7508

I
i scscefe: engih: 660 s 21 i1 ol Se:d 2iems

g 0 0 5 O & o B

And here you can see within this catch block we include the throw statement it basically
throw the exception to the caller. So, this method if it is called here the method is
basically the name of the method is namely the here method is ok. So, here is no caller of
course, so it will not return anything to any other, but if this method is the try-catch block
is inside a method, which basically throw then the throw and exception which basically

return to the caller here, fine.

So, this is the complete methods are there, if we run it then we can see how this output it
will give for us. So, it is basically showing the exception as we see for others it will give
it. Where is a program compilation? It is here, yeah. So, java array index out of bound
exception for 3 and it gives all the detail information about the exception it is there. So, if
you want to scrutinize this program for further details and then the cause and effects and

everything then all those information will be useful.

(Refer Slide Time: 18:48)

" 1011ajava - Notepad+ + = E

Fie B8t Sexch View Ecodng Limquige Setiegs Tooks Maao A Puges Wedon 7
£RDdcinth a0 %1 XN ee|/EE b ERQ

tch example .*/

clas Mla |
in(String args(]) {
ngth;
: /[Divide-by-zero exeception
System.out.println(" " a);
if (a==1)
a = af(a-1);// // Bnother divide-by-zero exception
if (a==7) {
ntcl]l={1};
c[2] = 99; // out-of-bound exception, if two argments
}
}
1

v socec fle lengin: 66 e 21 In:1 Col:1 56:010 Viedows (RLF) UTF-8

Now, our next example is basically nested try-catch example. Nested try-catch example
as we have mentioned that a try-catch block can be put inside another try-catch block, so
it is called the nested here now, this is the one program. As you see this program does not
have any error but when we want to run it, it may leads to some exception. Here this
program if it is run for the three different intention, for example let us run this program
and give the three intentions as we see and when the exception occurs you will see

exactly.

(Refer Slide Time: 19:15)

|&
3 3 =113 " B= a i
tch examp /
1011a {
oid main(String args(l) {
gs.length;
[a; /] Divide-by-zero except
System,out,println(" " +a);
if (a==1)
a = af(a-1);// // Another divide-by
if (a==7) {
ntel] = 3
e[2] = 99; /[out-of-bound exception, i
}
}
1
a/*Note: he program with the following output
: IN2ES!
2
I
|
1 i
i souce e Jengh: 660l 21 1n:16 Col:48 Se:010 Wedows (AL _UTF-5

a0 M Q@ o m

So, without try-catch this is the implementation and run this program first with 1 2 3 as
an input yeah, so this program is successful at this stage. Now, 1 2 only two input it gives
an exception as the array index out of bound exception. Now, again with only single
input it is also give an exception it is also arithmetic exception. Now, no input it is also
give an error, it is also given the error that, ok. So, we can see, so this program is
vulnerable to three inputs, as we are three cases, as three test data as we have checked it,

but it works only for them. So, exception is there.

Now, let us see our enmity how this can be robust, make a robust program using try-

catch, nested try-catch.

(Refer Slide Time: 20:13)

class Demonstration 1011b {

public static vo

i main(String args(]) {

try {
// To catch divide-by-;
int a = args.length;
nt b =42 [a;
/[divide-by-z n
System.out.println(" "+ a);
if(a==1)
a = af(a-a);
// another divide-by-zero exception
try {

// nested try block
if(a=2) {
// If two command-line
inte[1={1};
el2] = 99;
}
}eatch (ArrayIndexOutOfBoundsException e) {

System.out.println(" - Pt 4e);

}

}catch (ArithmeticException &) {
System.out.println(" ") ;

v socece fle engih: 21 s 36 In:1 Colil $4:0]0 Visdows ((RUP) UTF8 s

Now, here if we see the first blocks 42 by a is basically arithmetic exception and if a
equals to 1 it is an arithmetic exception. So, it is a very similar kind of exception. So, as
it is only one exception, so this can be tried with only try block. So, this is the outer try

block.

Now, inside again this is another exception if a equals to 2 it is basically the exception is
called array out of bound exception. So, to take care about this exception we put another
try-catch, so inside this one. So, this is an example of try-catch. As you see the in out try-
catch caught, I mean try for the array index out of bound exception and catch
accordingly whereas, the outermost try-catch block caught the arithmetic exception here

and cause it. So, this is the idea about the instant try-catch block.

(Refer Slide Time: 21:07)

R e TN R R s B =1 PRI -1

| Elpemnssaton wiiora B

fon_1011b {
¢ void main(String args(l) {

class Demons!

ch divide-by-zero

s.length;

ir a;
/] divide-by-zero exception
System.out.println(" "+ a);
if (a==1)
a = af(a-a);
anot {ivide-by-zera exception

}eatch (ArrayIndexOutOfBoundsException e) {
System.out.println(" ndex 3

}catch (ArithmeticException e) {
System,out,println("Divid r0:"+e)

v s e length: 521 e 36 i1 Col:t Seid Ziems 1

And now if we run this program and again try with all possible output for which it was

not working in the previous case let us see what will happen, 1 2 3 it is work. Now java 1

2, it is 1 2 it is also works, right. It is showing the report; it is basically catch the

exception has been cached. Again 1 it is also see divide by 0 it is basically the exception

has been caught, and then these also by 0 it is caught.

So, in this case the program is robust in the sense that in cause of exception the program

will completes its execution and finally without any abnormal termination or any causes

or loss of data whatever it is there. So, this is a concept of exception handling. In fact,

exception handling is a very important one features in java programming language

scenario, and more practice is required of course.

(Refer Slide Time: 21:54)

- Il
@n today's demonsration ... |

About compile-time error

About run-time error

Simple Try-Catch block

Try with multiple Catch

Multiple errors with single catch

Finally in try-catch block

Exception handling using Throws statement

Nested try-catch block ¢ <%

'+ NPTEL ONLINE DEBASIS SAMANTA

IIT KHARAGPUR CERTIFICATION COURSES CSE
| IIT KHARAGPUR

Again I advise you to practice all the example that we have used in this demonstration so
that you can practice of your own. And then this basically hands on practice is required
to understand all this things thoroughly, and in case of any doubt and confusion you are

most welcome to, feel free to ask us. So, thank you for your attention.

Thank you very much and all the best for learning.

