
Programming in Java
Prof. Debasis Samanta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 26
Demonstration – X

So, let us have the demonstration regarding the Exception Handling Mechanism in Java.

(Refer Slide Time: 00:25)

And today’s demonstration includes mainly the compile time errors, and then what are

the run time errors are there, and then how exception handling mechanism can be

achieved by means of simple try-catch block, try with multiple catch, then multiple error

errors with single catch. And there is another block that can be added with the try-catch

is called the finally, so try-catch finally block in along with the try-catch block, and then

throw and then throw used in exception handling and then nested try-catch block also.

(Refer Slide Time: 01:08)

So, let us have the first look about the compile time error. As you know if you run the

program which is not as per the syntax of java programming language. So, the job java

compiler report all this things as an error as we see here in this program here. We can see

lot of errors are there and here we can see in the first statement itself start with error

because java is a case sensitive. So, capital C in the class declaration key work is not

allowed.

(Refer Slide Time: 01:38)

So, if we run this program as it is a first execution, so compiler will halt it here showing

this error there. So, we will correct one error at a time as we see the compiler will report

the class error here.

Now, let us quickly remove this error now we can see there is more error and public also

capital P it is not allowed, so let us small capital is there and then again error is there, ok.

Let us quick to fix it, right. Public and then system as we see capital S should be there

and then capital S, and then you see all the statement should be terminative semicolon.

So, as there is no semicolon, so we should make the semicolon here again put the

semicolon as we see. So, java compile compiler will compile the program and whenever

it finds an error it will report it and then until this report is fixed, so this program will not

leads to a successful execution of the program.

So, there are few more errors as we see. Any method should not be declared and abstract

inside a class method as we can see here because it is not an abstract class. So, there is an

error, and then there are few more error as we see those basically compile time error

actually.

Now, so after knowing this compile time error let us have the run time error concept it is

there. Our next illustration to explain the idea is about the run time error. So, let us go to

the demonstration 10.2. Here we can declare on class, the name of the class is error and

ok, right.

(Refer Slide Time: 03:22)

As we see this is the one class declaration, let us follow let us have the quick look of the

class declaration here. Now here we can see this program is perfectly there is no

compilation error, as we have compiled it successfully; however, this program will run

but will not run for all. Now, if we run with this one we will see it run for all not for all,

but for some.

For example, for if we run this program with input 1 2 it will run, input 1 2 give, it runs

correctly. Now, 10 20 30, as we see these program will gives an, it is 10 30; 10 20 30. So,

this program also takes this input. Now, what will happen if we give only single output?

As we see it also ok. So, that is a single input in this case gives an error. So, this error is

basically array index out of bound exception array error it is there.

Now, again four 4.5 and 5 the different error it will basically it is called the exception.

Also we can see the number format exception error it is there. Now, we will see these are

not actually errors they are called exceptions because in some situation this program not

able to handle this, and this so program is there is no error in the program rather these

program cannot handle all input that is the cases of exception that is why they are called

exception.

(Refer Slide Time: 05:10)

Now, let us see how we can make our program robust using exception handling

mechanism it is there. So, let us have the first program there. As we see this program

10.3, this program we see there are lot of exception scope of exception as we see for

example, in the statement x; display, display yeah, ok. So, here we can see in that class

demonstration 103 we see a equals to x divided by y. So, there is a scope of an exception

to occur because if y is 0; that means, any function is called with two arguments with the

second argument is 0 and then again there is a possibility job exception in integer dot

percent in case suppose if we run this with non integer parameter passed through there

right.

Now, anyway. So, this program has that it is, it is if we compile it or definitely there is no

compile time error this means program does not have any error there. So, if we run it for

two it is no error, but if we run with see first argument other than 0 then, ok; 10 and 0 for

example, as we see here two inputs one is 10 and another is 0, because second input if it

is 0 it will basically divide by 0 or arithmetic exception as we see here arithmetic

exception error occurs here. So, this is a case of exception that we can see and we see

this program is therefore, not so robust.

(Refer Slide Time: 07:10)

Now, towards the implementation robust program we can use simple try-catch. So, this is

the example to show how the simple try-catch can make the program robust.

So, here the point of exception where we just enclose it in the try-catch block, and there

is another source of exception there a equals to integer dot percent they are also source of

exception there. So, we have just put them in the try-catch. Now, this program will run

for any input whatever the input that was not working in for the previous case.

Now, let us run this program with inputs 10 and 0 again. As it was not working there in

this case you see it works there and divide by 0 it reported and then result 0 is return this

one, ok. So, this way we can; so in previous case the program was not program was

abnormally terminated rather, but in this case program run successfully, but exception

which occurs it caught and then handle it.

(Refer Slide Time: 08:12)

Now, next example is basically, so how the robust program can be developed. Again the

same thing, if we run the different cases we can skip let us go to the 10.6 run the

following program, run the program without exception handling mechanism for some

input.

Let us see have the 106 program there, yeah. 10.6 program as we see here this program

includes again exception in many regions here in the for example, string my string, new

string, I, there is a possibility if i is 0 in all point are assignment and then next if my

string 0 equals, ok. We can write it instead of my string of my string 0 you know you just

write args 0 if args 0; no if args 0 ok, that is fine it will work ok, if args 0.

Now, let us compile this program and as we see it will work for some input, but not all

output, not all inputs, ok. And again if we run this program first say Java input is capital J

a v a. So, it basically run this program correctly and I love Java. Now, let us see you can

see this program is basically start at the point here in the last statement. So, error is there.

It will it will not work for example, now what will happen if we run this program without

passing any input common line. So, just simply run. It is also giving error because array

index out of bound error is there. So, we see this program is erroneous.

Now, let us implement this with multiple catch block.

(Refer Slide Time: 10:08)

So, this is an example to illustrate the try with multiple catch. So, all the errors all the

exception those occurs there in the program can be handled using try or that means, try

will check if exception if any occurs during run time and then corresponding catch will

catch all the exception and then handle them with their proper code here. Here very

simple code that we have used system print l n only.

Now, here there are point one where the error occurs, point two also the error occurs and

point three also the error occurs here. And we just in the process of catching this here

arithmetic exception and then if it is there so first catch is to catch the arithmetic

exception, second catch to null pointer exception, and then the third catch is to array

index out of bound exception. So, this way if we run this program again it will run

successfully, again my string 0 you can check it arg 0 that is all. If statement, it is ok,

fine,.

(Refer Slide Time: 11:12)

So, this program is now robust and whatever the situation happens here in the last case it

was working java all the input it is where, but I love java it was not working there. A null

pointer exception java dot; lang null pointer exception where it is? Ok, you just do my

string whatever it is here, ok. Run this some of here is a program, yeah. So, no compile

time error, yeah. So, there is a error because no input, if we do not give input one error

will be there, if we just simply java a null pointer java dot lang (Refer Time: 12:12),

yeah.

So, it was working correctly; there are some marks there we have resolving. Anyway, so

now, again if we run this program java without any input, I mean this program without

any input common line output these also it will it will catch the exception and

accordingly program will not abruptly terminated. Array index out of bound this is why it

gives the error, fine.

So, let us have the next one. This is also another example that multiple errors by a single

catch. So, this example we can see the multiple errors here in the switch statement

actually, in every switch there is an error is there. And then if we run this program as we

have make the program robust by using single try, but the multiple errors are only one try

and then catch is to handle all the catch here you can see catch exception e because of all

the irrespective of the type of error it will catch it. This is the exception is there.

(Refer Slide Time: 13:26)

And this program will; ok. If we run it, it in fact for each switch statement case statement

it will face an exception and this accession will caught by the catch statement.

(Refer Slide Time: 13:33)

Yeah as we see so all exceptions those are occur in the four case statements are caught in

the single catch statement.

(Refer Slide Time: 13:58)

Now, so there is another block that can be added with the try-catch block called the

finally,. So, here is a next program that we can see, ok.

(Refer Slide Time: 14:03)

We can see the block with finally, so all the exception that can be caught by try here the

try statement and then corresponding catch, and then we add it finally, statement here.

And as we see whatever the exception whether occur or not this finally statement will be

executed and it will accordingly the code will be, code will run and then gives the output.

Now, let us run this program as we see the greetings has the three, so this while loop is

successful for three, first three loops, I mean three iterations 0 1 3, but three for the three

because less than 4 means this loop will roll till 3 and for the last one it will report an

error and then we will see the finally, will print this statement accordingly. So, here we

can see it will print high statement all the time, but the next if i less than 3 it will do

nothing but it will be if i greater than 3, ok. So, as we see this is the output here and the

last statement finally, whenever I loops is there fine. So, here we can see that finally

block if it is added with try-catch. So, for every try-catch occurrence this finally will be

executed, this is a main use of the final statement finally statement.

Now, our next illustration to highlights the throw clause in a program and here is

basically the demonstration of the throws.

(Refer Slide Time: 15:35)

As we see as we have discussed in our theoretical discussion a throws clause can throw

an exception explicitly and those exception then can be caught in the try-catch block

here. Now here is a small program segment as we see the name of the class is

demonstration and the score 1010, and here array is a declaration of size 3 and then try

for integer i equals to 0, i less than 4, so 0 1 2 3. As it is a array size 3 definitely for the

first array it is a array index out of bound exception it will be there. So, for i equals to 0

no exception, i equals to 1 2 no exception, for i equals to 3 the exception will be there.

(Refer Slide Time: 16:27)

Now, this exception will be caught in the try block and then catch will do it and here

actually it will see the different methods those are there in the exception class is invoked

here. For example, getCause, then fillInStackTrace, then getLocalisedMessage,

getMessage whatever it is there. So, it is basically the implementation of exception class

in java dot lang throw able package and according to this we can access these method in

our program.

So, this catch whenever it occurs it catch the array index out of bound exception, for that

error it will basically give the all message trace and then regarding the complete

information about the exception that it occurs there via the different methods in that

throw able class. Now, let us run this program and also it has finally method.

(Refer Slide Time: 17:19)

And here you can see within this catch block we include the throw statement it basically

throw the exception to the caller. So, this method if it is called here the method is

basically the name of the method is namely the here method is ok. So, here is no caller of

course, so it will not return anything to any other, but if this method is the try-catch block

is inside a method, which basically throw then the throw and exception which basically

return to the caller here, fine.

So, this is the complete methods are there, if we run it then we can see how this output it

will give for us. So, it is basically showing the exception as we see for others it will give

it. Where is a program compilation? It is here, yeah. So, java array index out of bound

exception for 3 and it gives all the detail information about the exception it is there. So, if

you want to scrutinize this program for further details and then the cause and effects and

everything then all those information will be useful.

(Refer Slide Time: 18:48)

Now, our next example is basically nested try-catch example. Nested try-catch example

as we have mentioned that a try-catch block can be put inside another try-catch block, so

it is called the nested here now, this is the one program. As you see this program does not

have any error but when we want to run it, it may leads to some exception. Here this

program if it is run for the three different intention, for example let us run this program

and give the three intentions as we see and when the exception occurs you will see

exactly.

(Refer Slide Time: 19:15)

So, without try-catch this is the implementation and run this program first with 1 2 3 as

an input yeah, so this program is successful at this stage. Now, 1 2 only two input it gives

an exception as the array index out of bound exception. Now, again with only single

input it is also give an exception it is also arithmetic exception. Now, no input it is also

give an error, it is also given the error that, ok. So, we can see, so this program is

vulnerable to three inputs, as we are three cases, as three test data as we have checked it,

but it works only for them. So, exception is there.

Now, let us see our enmity how this can be robust, make a robust program using try-

catch, nested try-catch.

(Refer Slide Time: 20:13)

Now, here if we see the first blocks 42 by a is basically arithmetic exception and if a

equals to 1 it is an arithmetic exception. So, it is a very similar kind of exception. So, as

it is only one exception, so this can be tried with only try block. So, this is the outer try

block.

Now, inside again this is another exception if a equals to 2 it is basically the exception is

called array out of bound exception. So, to take care about this exception we put another

try-catch, so inside this one. So, this is an example of try-catch. As you see the in out try-

catch caught, I mean try for the array index out of bound exception and catch

accordingly whereas, the outermost try-catch block caught the arithmetic exception here

and cause it. So, this is the idea about the instant try-catch block.

(Refer Slide Time: 21:07)

And now if we run this program and again try with all possible output for which it was

not working in the previous case let us see what will happen, 1 2 3 it is work. Now java 1

2, it is 1 2 it is also works, right. It is showing the report; it is basically catch the

exception has been cached. Again 1 it is also see divide by 0 it is basically the exception

has been caught, and then these also by 0 it is caught.

So, in this case the program is robust in the sense that in cause of exception the program

will completes its execution and finally without any abnormal termination or any causes

or loss of data whatever it is there. So, this is a concept of exception handling. In fact,

exception handling is a very important one features in java programming language

scenario, and more practice is required of course.

(Refer Slide Time: 21:54)

Again I advise you to practice all the example that we have used in this demonstration so

that you can practice of your own. And then this basically hands on practice is required

to understand all this things thoroughly, and in case of any doubt and confusion you are

most welcome to, feel free to ask us. So, thank you for your attention.

Thank you very much and all the best for learning.

