
Programming in Java
Prof. Debasis Samanta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 25
Exception Handling – III

So, let us learn few more things regarding exception handling in java programming. We

have discussed about the exception handling features mainly the try-catch finally, throw

and throws.

(Refer Slide Time: 00:32)

Now, in this module, we will discuss about the built in the different packages. And before

that we should discuss few more things they are the so that try-catch. So, for try-catch

concept as we have learned about, there is a scope that the nested try-catch can be

implemented. Now, here is an example to include this concept called the nested try-catch.

It is a nested means the try-catch block within another try this is the concepts. So, and

there is no limit of nesting, try-catch block within try, within that try-catch block another

try-catch like this, this. So, and then obviously that what is the reason, what is the

purpose; why you should do that there obviously, it is the questions.

Now, the basic concepts, so for the nested try-catch can be understood here from this. So,

suppose this is a method which is under the investigation of handling exception. And

here if you see there is one what is called the inner try-catch, sorry outer try-catch block,

within this try-catch we can define another try-catch is called the inner, within this also

another try-catch block can be define like this. So, if we define a try-catch block within

another try-catch block, then search a try (Refer Time: 01:49) is called nested try-catch

block.

(Refer Slide Time: 01:57)

Now, let us see one example where it can be applicable. This is again simple example

that we can thing about ok. These are very simple program, it has only main method. So,

you want to handle the exception in this method only. So, here is basically a args dot

length, for the args dot length means whatever the input that user past according the

number of input, this value a will be decide. So, if user do not pass any input, a will be 0;

and accordingly the value of a will be there. Now, here if user do not pass any input, then

a is 0; and as we see there is an exception call divide by 0 or arithmetic exception.

Now, again let us see here, suppose user enter only one input, so in that case a equals to

1. Now, in that case also it will give an error. So, it is also the divide by 0 error. Now,

another situation so it is not the 0 input it is not the single input. So, suppose user enter

two input, the in that case if you see if a equals to 2, then there is again possibility of

error, because here we declare an array of integer c with only one element c need, that

means, size of the array at represent is one, but we want to store a value at the second,

that means, this is array index out of bound error is there.

Now, so here basically two type of errors. In the first two cases as we see here and here,

this arithmetic exception error; and in the second case is there is called the array index

out of bound exception occurred, so two type of error. Now, if two type of errors, then

we can think for only two catch block. Now, here the idea is that we can write one try

block here. So, this catch block, this try-catch block will handle these are the arithmetic

exception error. Then there is another error that may occur within this, so inside this

another try-catch block we can put, so that it can handle this exception. So, this is a

concept, this is a concept of nesting. So, this is a simple example.

(Refer Slide Time: 04:11)

So, here is a solution for the nesting case is there. As we see this program will not run for

all the input because it will give an error whatever it is there. It will run for this one no

error, but for this one it will error.

(Refer Slide Time: 04:26)

Now, so the remedy here we have checked it here. So, let us see this program as we have

see this is the try and corresponding to this. So, this is there is a two try-catch block. As

we see in this program this is the one try and this is the corresponding catch, so try-catch

and this is a inner try-catch. And outside this, this is another try and this is another catch.

So, so it is called the nested try-catch. Now, if we see this inner try-catch, we will handle

the exception, this is the array index out of bond. Whereas, this try will handle the case

this one, and then finally, this is work. So, this is idea about the nested try-catch block.

So, java is basically is a very versatile programming language in the sense that whatever

the possible exception and errors may occur in a program, it can handle. So, regarding

this things, the java developer or jdk package includes a very nice one package java dot

lang package. This package has been planned to, so that it can take care many errors and

exception.

(Refer Slide Time: 05:46)

So, this is the class hierarchy that this java lang package has regarding that exception

handling. So, here basically there is a class called object is defined in this java dot lang

dot throwable class, it is called the class throwable. Under this throwable, these are the

basically hierarchy of the different sub classes of the class throwable. So, object is the

class super class under the super class throwable is basically another inter. And this

throwable has many at so this basically throwable class as the two sub classes errors and

exception. Now, the simple exception is there, and then runtime exception is there now.

So, so these are the different what is called the class hierarchy that is there in the java dot

lang throwable classes are there. Now, for each classes there are different what is called

the exceptions that may occurs under this classes, so that they can handle it.

(Refer Slide Time: 07:03)

So, here is basically let us first discuss about the runtime exceptions sub classes which

basically causes many exception. So, I exceptions are discussed here. As we see here that

five around ok, so around 12, 18th, 18th, 6, 6, 12 ok. So, 12 different type of exception

that may occur during runtime exception sub classes which it can cause.

For example, we have already discussed about array arithmetic exception, array index

out of bound exception, and then there is a many more array this illegal argument

exception, security exception, incompatible class change error index out of bound

exception negative array size exception, null pointer exception, number format

exception, string index out of bound exception, few exception already we have discussed

in our discussion and few more exception that we will learn about while we have a

demonstration on this concept, so that it will clear our idea.

Now, so these are the different type of exceptions that the java developer automatically

these are built in exception types which is already there in the runtime exception

category of the throwable class. Now, so these are the frequently occur exception related

to the different situations it is there.

(Refer Slide Time: 08:27)

Now, other also there is another class exception sub class also there. It is basically in this

exception sub class, there are few more exception that it may handle is a class not found

exception, and then data format exception, illegal access exception, instantiation

exception, interrupted exception, no such method exception and runtime exception.

So, these are the different type of exception it is usually if you are an advance java

programmer, then he may phase this kind of exception when you are developing

applications. So, in that case all the coming to the picture, but it is very difficult to

illustrate all this exception one by one, because it is too more I mean it is also not

possible in this shortest time anyway. So, these are the different exception. So, for

runtime exception and then exception sub classes is concern and there is one is called the

error sub class.

(Refer Slide Time: 09:24)

So, in the error sub class also, you can see these are the different exception that it may

occur ok. So, this is the error classes, and this is the exception sub classes.

(Refer Slide Time: 09:44)

So, these are the few more errors that is there in the exception classes as we have

mentioned here that class circulatory error, class format error, error, simple error, and

then linkage error, instantiation error, no class define found error, no such method error,

no such field error, out of memory error, stack over flow error, throwable unknown for

error, uninsatisfied link error, then verify error and virtual machine error. So, there are

many errors that may occur in a program which is discussed here.

(Refer Slide Time: 10:26)

Now, all these sub classes that we have discussed is associated with many methods. Here

we have listed few methods, and with their description. As you see here they get message

probably you have run about the get message is basically it will tell about a particular

error. So, it is it basically returns a message about a particular exception that usually it

over an encounter. So, it is basically this message is initialized through a constructor

which is defined in throwable class; this is the main class, super class.

Now, there is again get cause, it basically a return an object of class throwable to the

caller program if a method in which this exception occur, it will basically throw a throw

an exception to the caller, so that is why get cause it basically tell about the reason for the

exception that it have. So, it has very useful indication to both the programmer as well as

for the user also. Then to string here it basically return the name of the class where this

error occurs. It possibly concatenated if this class is under another class or is a nested

class or derived class or whatever it is there, it will basically concatenated, all the classes

then give a particular location. So, this is particularly very much useful for debugging,

debugging the program and testing the program.

Then print stack trace it is just like a idea about tracing there that means, if an error

occurs in a particular method. If this method is declared in which class if this class is a

derived class or not or implements and interfaces like this. So, it will basically give a full

trace off the location where this particular exception occurs. Or if there is a chain of

exception one exception can propel other exception, then other exception also using this

print stack trace, we will be able to trace the reason or the location of the exception.

Then stack trace element, it is basically and advanced version of this one, it basically it

multiple errors are occurs, then it basically put on into the stack whenever we writing

same recursive program suppose and there maybe multiple exception occurs in a

different points. And then it will basically (Refer Time: 13:11) all the exception into a

stack, and that is basically the idea about. And then finally, it will use this one.

So, this get stack trace is basically catch all the exception that it may happen in a method,

and it will push on stacking actually it is stacking into a stack. And then fill in stack trace

also it basically this method returns a object returns and exception object of this

throwable class. And whenever there is an exception occurs, and then obviously, in the so

it basically think that whether stack is able to maintain handle this kind of exception or

not. So, this is the (Refer Time: 13:56) is statement like. So, these are the different

methods which are there in the exception class.

Now there is a possibility, so that depending on the needs of user, user can define their

own exception. So, this concept is basically to make the program, more versatile, more

flexible more robust and reliable. So, this is possible by means of user defined exception,

in other words user can define their own exception.

(Refer Slide Time: 14:35)

So, here is an idea, let us see how user can define their own exception. Now, first of all

you have to create a class that class should be a derived class of the super class

throwable. So, it is basically all exception must be a child of throwable class. We have

already discussed about this throwable class is defined in java dot lang package. Now, so

this is the syntax by which we can create an exception which basically type of the

runtime exception that can handle it.

So, here as we see class, my exception it is basically user defined class. And extend

exception, exception is basically is a sub class of throwable, we have already learned

about. And sometime the runtime exception also we can declare, so there are different

type ok. So, so this is the way by which user can define their class, and here the code of

the exception class. Now, let us have an example, so that we can understand how user

can define his own exception.

(Refer Slide Time: 15:46)

Now, this is the very simple program. And here we can see this is the user defined one

class. This is the user defined one class. We define the name of the class that we have

define is insufficient found exception which basically is a derived class of exception.

And these are the a few quotes of this right. So, here private double amount is a one

field, and then this is basically the constructor of this class, this will take the amount.

And this dot amount it basically initialize. And then there is a another method public

double get amount and return amount.

So, so the class is very simple. Without any exception this class can be considered only

simple class a and then all this course can also be there. But we have to just make it

attend exception class, this one of our own. Now, let us see how we can use it this is a

one application that we are going to discuss in the context of banking transaction and

then we can understand about it. Let us have the discussion so that we can discuss about

it.

(Refer Slide Time: 17:05)

Now, so this exception that we have discussed here we want to use it in our application

class. Now, so application class is like this. So, there is a user defined class checking

amount, checking account. So, it will take the balance, then number, and then it is a

constructor here. And this is another method deposit amount and the balance will be

increased. So, this is a concept it is there. So, it account will be checked, and then the

amount that will be deposited will be deposited into the account. And there is another

method which is in this class is also there withdraw method, deposit method, withdraw

method. And here in this case we have mentioned one exception throws, throws

insufficient funds exception.

So, if we can find that if amount less than equals to balance, then balance will be

negative or balance will be adjusted, and then if it is not, then it will throw an exception.

So, this exception is basically it is there. So, suppose user one user wants to withdraw

some amount which is not permissible as per the balance is concern, in that case it will

throw this exception insufficient funds exception. So, this is the idea about. ah

Then once this class is declared, we can use we can define the main class here. Here you

can see this is an extension of this one just ok, withdraw has this one else and this class

has few more course of course. So, here is few course it is there. And then these are the

simple get balance and then get number, these are the complete description of the class

has it is there, checking account class. Now, on this class is defined, then we will be able

to define our main class.

(Refer Slide Time: 19:00)

So, the main class it looks like this the name of the main class is bank demo, and it has

the main method. And we can see we have created an object of checking account and

then say let there may be 100 plus the account holder is there. So, these are size of the

total customer base actually. And then system dot out print ln depositing dollar 500, this

is a one method it is there. And then see deposit 500, so it is basically that ok. This for

this object we want to write call the method deposit.

So, now, after this thing try catch is there c dot withdraw, and then c dot withdraw. So,

this is the 100 withdraw one instance, 600 withdraw another instance. Now, in case,

suppose there is any exception occur, then this is a catch block which will take care. So,

this is our the fund exception, user defined exception as you can note it here

 Now, so there are few instances that it may occur. If you run this program the entire

class declaration that we have discussed and then run it. And then there are few instances

of the input that we can see depositing dollar 500, withdrawing dollar 100, these are the

things that we will sorry, but you are short of 200, insufficient funds exception at this

one, it basically shows the different situation when this program is executed.

So, this way you the user can define their own exception, and then can develop the

program according to their requirement ok. So, this is about the different cases of the

exception that it may occur here. And we are almost at the final round of the exception

handling discussion. Before going to this things I just want to mention few a simple

example, let us see whether you can follow it or not.

(Refer Slide Time: 21:05)

Here is the one program and just took a check this program and tell where is the possible

scope of exception that it may result. As we see here so this is a simple class only one

class which has the main method, this is the main method. Now, let us can one by one

this statement. Now, I am telling one very simple rule of thumb is that if we suspect any

exception that it may results, then that statement that code can be put under try-catch. So,

in that catch, the very simple way that you can handle the exception is that so many try-

catch corresponding this one, but this is obviously, makes the program to so many try-

catch, but ultimately it is a robust of course.

But there are many way that is the rather efficient way that with minimum number of try-

catch how we can handle everything. So, usually the advanced programmer think for this

one that with minimum number of try-catch, whether this is try-catch nested, throws-

throws you, with your own exception, whatever it is there, anyway. So, for a beginners,

the best practice should be that if you see that there is an error so put a try-catch and

accordingly handle it, you can use the finally, if you want if you do not want, then final is

a default one. So, it is not necessary to use.

Now, so here again here if you see this is the one statement, do you think that there is a

possibility of an exception occurred here. Yes, because if the scanner class is not

instantiated, and then create a scanner object, then it may leads to an exception. So, there

is a possibility that an exception occurs. So, this is a one possibility that exception occur.

Now, next is here this statement and this statement as well as. So, next int is basically it

check that in the line of input, whether the next input is there. If some regions are there,

whenever this input is not there or not able to read integer rather some string and

everything, then this statement also throws exception. And these are the very simple. So,

there is no exception.

Now, so these are the point here, here, and here. Now, how many try-catch block that you

can think for fine. So, one solution is that, all these things put can be put only try, and

then here is the catch or the or as it is a try this is the one kind of exception and this is the

only kind of exception. So, nested try also can be plan, so that with minimum number of

try-catch code, we can handle the exception here in this case. So, it is the practice.

So, you can think about how you can put it. It is basically if you put many try-catch

block, absolutely no error, no problem, because if the exception occurred then only it

will be there. But the problem is that if you do not mention try-catch block properly, so

that even in the case of exception occurred you are not able to catch it, then it is a

problem, so that is a things are there.

And one more thing, so if you do not put try-catch block explicitly, but there is a

possibility of exception occurs. So, during the compilation, the compiler can note it and

then compiler can report it. Until you put try-catch in your block, compiler is not compile

it successfully. So, this is the one great advantage for the programmer that ok, if you are

supposed miss to add try-catch construct in your program, the compiler will help you to

do that. So, there are many ways it is possible. So, this is the one example that we have

discussed about in a scanner, and this is simple one example.

(Refer Slide Time: 25:07)

Now, let us consider another example. It basically is similar to the scanner. This scanner

means it is basically read the input from the keyboard, and then store into an array. Here

is an example as we see. And array list is a one structure data structure defined in java

dot util package. Now, let us see here. So, so this is a simple again code, the main

method. And obviously, there is no point of exception, but here is a one point of

exception that if the array list is not this l is not built in properly or not created

successfully. If it is not created successfully, then here is an error occurs, here is an error

occurs, and then here is an error occurs. And also here another error occurs that l dot size

if you have created an array list, but this size of the array list is very small rather is a 0,

then also it can created, it can creates errors.

Now, we have pointed out few things are there, again another also there is also

possibility that one error is occur here. Now, again if I ask you that ok, how you can

insert the try-catch block in this program, so that this program will be robust or if you

can think about of your own throw, and then accordingly user-defined exception you can.

So, if you want to have your own user-defined one, you should defined a exception

classes which is a child class derived class of throwable or exception, and then according

to that you can write the try, here the try, here the catch or here again try another catch,

so that all the exception it can be handled in this program. So, the many ways actually

that you can do. So, this is the one idea about.

(Refer Slide Time: 27:09)

Now, let us have another example ah. So, here is another example. And this example we

have discussed while we are considering input and output to the system. This example as

we see here we have fine, this is again simple method main method it is there. In this

main method, these are the simple declaration of the two objects. So, this is also another

declaration. So, these are declaration. There is no point of any exception occurs here just

a matter of discussion a declaration only.

Now, here if we see here again this one this basically is the one very critical code here,

because we have to create an object of data input stream and sometimes this may have

problem. Sometimes I told you, not always, and exception is like that it can happen in

some special situation like this. Now, in that case, so this statement should be covered

under try-catch block. Now, if there is a problem and subsequently, they are also the

possibility that there is a problem here either it is a read line problem from the object in.

There is also a read line from the object in; there is also there and like this ok. So, one,

two, three, four, the four points where we can see the exception occurs here..

And also here, so this is basically this is the one value of changing conversation string to

float value, string to integer to parse in there is also possible scope of errors there. Now,

as we see as they these are the possible, because you have entered some value which is

not possible to convert an integer say 2 0 20.55, then in that case it basically not able to

parse into integer, so that error will be there. So, as you see, so these are the four cases

and this also other three cases that error may occur.

Now, once you identify this is a possible location that the exception can be thrown or

exception can occur, then accordingly we have to take care about that try-catch. There

are again many ways are there. First of all we can use the throw statement. So, what we

can do is that, we can write here the throws, throws and exception. Then what about the

causes are there, we can put try and then here catch, so try and then catch, then exception

occur (Refer Time: 29:57). So, this is the one way. So, throws means it will basically

throw all the exception that it may happens and then using this try-catch they can be

exception.

Now, other than using the throw statement itself simply try and then the catch also can be

put here exception. If you can know that this is the exception due to this, this is the

exception due to this, then accordingly several catch block several catch block you can

put it for each exception. So, this is a case of single try with multiple catch. And also one

try with all exception in multiple exceptions by one catch also in that case similar to the

throws also we can use it. So, in the many ways, many ways that you can do only if you

know the mechanism, then all those ways that can be incorporated in your program, and

thus you can make your program very robust.

(Refer Slide Time: 30:56)

So, this is all about the exception handling concept in java programming. Now, after

knowing the exception mechanism; our next tasks to learn about how the distributed

programming can be done because java is very famous for distributed computing. So, in

our next model, we will learn about the distributed programming more specifically the

multithreading concept. And then, we will discussed the how java right language can

helps a programmer to develop their internet programs. So, these are the concepts these

are, I mean questions will be answer in our next module (Refer Time: 31:45).

Thank you very much.

