
Programming in Java
Prof. Debasis Samanta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 24
Exception Handling - II

So, we are discussing about, Exceptional Handling in Java and in the last module, we

have discussed try catch mechanism. In addition to this try catch mechanism; there are

many more features, so for the exception handling is concerned. So, today we will

discuss few of them and then other features advanced features also there. So, those things

will be discussed in our next module. Now so, now we have discussed about try and

catch block and there is another, this is a simple what is called the exception handling

mechanism. Now, apart from this simple there is also one more mechanism, it is called

try with multiple catch.

(Refer Slide Time: 01:10)

So, there are many features, try with multiple catch is the one. So, here the idea is

basically, the methods, where we are interested to maintain the exception handling. So,

suppose, this is the entire method and then, so try with multiple catch implies that, there

is only one try block and there is many catch block. So, two or more catch blocks are

there then it is called the try with multiple catch.

Here, if the concept is that in the try block it will catch whatever the exception it will

occur, so only one try. So, try block will responsible for two catch all the exceptions and

for each exceptions, we have to maintain the catch block. So, that the corresponding

exception, for a corresponding catch block, we will take care.

So, this is the concept. So, try catch block is basically to indicates that if there are

multiple errors or exceptions occurs in a program, they can be tried it with one try block

and they can be caught with multiple catch block.

(Refer Slide Time: 02:23)

Now, here is an example, very simple example to explain how the try with multiple catch

we will work. Now, let us look at this program. Now, we can see there are multiple

points, where the errors may occur, as you can see in this program. So, it is basically

considering the common line arguments. So, if the common line arguments is there. So,

it basically have the args length; that means it, how many inputs that user has passed

through the common line that will be stored here and after that we can see this is a one

point, where there is a scope of error or exception.

Why? This is, because if user does not provide any input in that case i equals to 0 and if i

0, then this is not a valid one. What is call the declaration, is called the null pointer

exception. Now, another here is also if you see, there is also one scope of error, if user

does not pass any input then args 0 is also a null pointer and there is another also, you

can see here, at this point also one error.

So, if i equals to 0 so, it is basically the arithmetic exception namely, the divide by 0

error and here also if you see there is a possibility of error, if the value of i is more than

2, because here the i then array is initialized with two elements. So, array index is

varying from 0 and 1. So, size of the array is 2 and then here if I suppose 3 or more than

1; that means, 2 then it basically, gives an error.

It is called the array index out of bound error. So, as you see this program can run for

some input, but not necessarily it will run for all inputs. So, if the program does not take

care about all those exceptional input, then it is the exception and this way this program

is in fact not so robust.

(Refer Slide Time: 04:53)

So, there are few input as you can see, if you try this program with all this inputs you can

see these are the; so, this is the one exception occurs in this input, here also exception

occurs and here also the exception may occurs. So, there is a different exception that may

occur for the different input like this.

(Refer Slide Time: 05:20)

Now, so, as a way out of these things, so they are basically, as I have mentioned again,

let us specific as there is a one vulnerabilities, here is also errors may occur and there is

also error occurs. So, there are three points where the error occurs, so multiple errors,

multiple exceptions. So, here is the idea about that how we can handle with try with

multiple catch. So, idea is that we can include all the statement where exception may

occur under the try block and for each exception, we can plan the catch block. So, here is

an idea about this things, which is the program has been re written with try with multiple

catch. Now, let us look this program little bit carefully, we will be able to see.

This is the program that where we have included try with multiple catch as you can see

here is that, this is a basically methods portion, where the exception may occurs at this

point. This is the one point, this is the here and this is the, these are the three points at the

exception may occurs and to catch this exception, we have mentioned one catch. This

catch is basically to handle the null pointer exception error mainly here and this catch is

basically to handle arithmetic exception error divide by 0 error here and these catch is

basically to handle the array index out of bound error here.

So, as you see for the different exception, we can plan the different catch block. Now,

this is; obviously, not possible with simple try catch block, because it will catch only one

exception, but there is a master exception we can consider. This is possible, but if you

want to pin point or more specific about what particular errors or exception occurs then

definitely we should think for try with multiple catch. Now, so this is the one features.

We have learned about simple try, try and catch, then we have discussed about try with

multiple catch and also it is possible to catch by means of only single catch block, but the

multiple errors are there. That is what I just wanted to discuss about this things in a

different way, that we have discussed in the last. See, try with multiple catch by more

errors, in the last example that we have seen, but we have planned more catch block, but

here multiple errors, but single catch box. So, this is the one idea about so, here is a one

concept, concept is like this.

(Refer Slide Time: 08:06)

So, this is the method as where the exception may occurs and then these are try, here in

this part many errors may occur as in the last example that we have discussed, but there

is a one catch that can handle, whatever the exception it is there.

(Refer Slide Time: 08:29)

Now, here is an example that we can see, this is a very nice example to explain this

concept very carefully. Now, here if you see so, this is the method, main method actually

here. Now, under this main method as you see there are many point of exceptions that

may leads. So, here is the one point of exception, because 0 equals to here divide by 0

error. Now, here also you can see as b is initialized is a null pointer and we want to have

access b 0, the zeroth element.

This is also an error and here also you see, here the array c is declared, which size 2 only,

but here we want to access the tenth element, which is also not possible. And, here also if

you see these a string and we want to find the character at ninth position, where is the

sting; has maximum up to third location, index is 3. So, here the string index out of

bound, here the array index out of bound, here the null pointer assignment and here the

arithmetic exception. So, there are so many errors that may leads to whenever we want to

run this program.

(Refer Slide Time: 09:48)

So, this program, if we run then it will give always this error, because of static error that

is there. Now, let us see what we can do so that this program will be more robust, more

reliable.

(Refer Slide Time: 09:53)

So, this can be implemented with only one catch and then on try. So, idea it is like this,

here you can see. So, this is basically, as you have mentioned the try block. So, that

whatever the error it will occur, it will try to see whether if any exception error occurs or

not and then here we can see a single catch. Now, in this catch if you see, we have

thrown an exception of the class exception. Now, in other example; in the last example,

we have mentioned the exception of a particular class, say; a null pointer exception or

arithmetic exception or divide by 0 exception or like this ok.

So, here is basically, we will catch the all. This is basically the super exception class. So,

it will catch any sort of exception whatever it is there, but if we write the catch, which

say array index out of bound exception e, then only that kind of exception that this catch

box will handle. But here the single catch will catch any kind of exception that may

occur. So, it is a general, general one implementation and here also you can see for the

different exception, the different messages meant already in the exception class, it is

there.

So, this basically will print e dot get message; that means, it will tell that ok. It is array

index out of bound exception or what type of exception it is there. So, this is the idea

about multiple errors which single catch. So, sometimes whenever we are not sure about,

if any exception we will occur in our program, then usually programmer will prefer this

kind of things. So, only say one try and one catch that catch will consider or handle only

the object exception e.

So, this is the very simple one approach of course, sometimes it is, but in some sense

cases whenever we need say details error or exception mechanism, this is not so much

preferable, anyway. So, this is the things that we have learn about simple try catch, try

with multiple catch, multiple errors with single catch. Now, in addition to this, there is

another concept, it is called the finally, associated with this try catch block.

(Refer Slide Time: 12:18)

So, the idea about this finally, is that. So, try catch we have already learned about it, then

it will contains another block is called the finally. So, it is basically, the idea is that if

there is any exception occurs or not occurs. So, in that case the final you will always

execute for you. So, this means that it always execute this code.

So, this code is basically helps to the programmer that if an error occurs then, what is the

remedy for that error? So, programmer can have the flexibility to mention or inform to

the user so that if this is the error occur so what the user should do like this and if we

does not occur you can say that, the program is running successfully, this kind of things.

So, this is idea about finally.

(Refer Slide Time: 13:14)

Now, let us have a small example to explain the concept of finally, here. Now in this

program, if you see we have declare and array, the name of array is greetings, which will

be initialized with three strings; "Hello Twinkle!", "Hello Java!", "Hello World!" and so,

it is basically greetings has the index from 0 to 2 0 1 and 2. Now, here if we run this y

loop then ok, for i equals to 0 1 2 it will work, but for 3 and after that is, it will basically

gives an error or exception, this is, because so i greater then, if i is equals to 3 and it will

try to find this one right. For i equals to 3 then greetings, because it is 0 1 2 maximum so

3, in this case it will gives an error.

So, this loop if we roll, it will roll for first three input 0 1 and 2, but for 3 it will give an

exception. Now, here the finally, catch is basically for each iteration it will, there is no

exception so catch will not do anything, but finally, we will say that whenever i is get

less than, greater than 3 it will basically gives that error. So, this is the idea about that the

final you will, finally a block can be added in addition to try catch block, to give more

flexibility to the user. Now, Java also allow programmer to throw exception explicitly.

Now, all this example that we have discussed that, it is basically implicit throw. That

means, whenever the exception, we will occur the Java runtime management manager

basically, we will check it and then try for any exception, if it occurs and then catch it,

but sometimes we can throw the exception of our own. So, this can be done by throw

clause.

(Refer Slide Time: 15:25)

So, there is a throw clause, it is there. Now for example, here as we see, so this is a

simple try catch block in a block and here is a throw exception object. So, different type

of exception and corresponding exception can be thrown by this one. So, this is the throw

clause ok. By writing this throw so far, in the our previous example we have not use this

throw. Now, we are going to use this throw that explicitly, it will throw and exception

objects. Now, this is basically, if you find some error during some input or in your

program or system, then you can throw especially that is why the Java developer has

maintain this kind of concept here.

(Refer Slide Time: 16:11)

Now, let us have an example here. So, a throw can, can also throws many exception that

is also possible and so, there is again, in other than this throw there is also in throws; that

means, if it throws multiple exception. So, this is the idea about, let us have an example

so that we can discuss, we can learn this example and then have the full idea about it.

(Refer Slide Time: 16:39)

Now, this is the one simple program that we can just check it. Now, here we have created

one exception, the name of the exception is my exception and this is basically than

inherited, a super class of exception actually. So, it is a derived class, super class

exception. As you know that exception class is already defined in this java dot lang

package.

So, this is the concept that ok, we have to create and exception class. So, it is basically,

user created exception class and so what message that, this exception class can give to

the user is basically, this is the message and this is the constructor that is defined in the

exception. So, using this constructor is basically overloading and this basically is a

definition of the constructor of this, my exception class actually.

And so, this part is basically declared a exception class of users own. So, it is a users

own exception. Now, I will discuss about there are many built in exception classes are

there. Now, this is the user defined exception class, anyway. Now, once you defined the

user exception class then you can create an object of that class and here is an example.

Now, if we see this example. So, this is very simple one.

So, this is the main method as we see and here the possibility of causes of error it is

there; obviously, y 0, but in this case you see y is always 1000 static value. So, no, but

sometimes user can tell that ok, if this ratio is within not threshold for example, if z is

less than 0.01 and then only you can raise the exception. So, here actually if z, which will

come from this arithmetic operation, is less than this one, then it will throw, this is the

exception with this message.

So, this is the i use of the explicit, throwing an exception in a method and then this is the

catch, as you see, this will catch the exception of this type and then the message, the

block for the catch. And this is the finally, as you have mentioned, that it will always

execute whenever there is an exception occurs or if not occur, if there is an exception

occur, you can maintain the code, what it should do and whatever it is there. So, this is

the idea about, that idea about throw clause.

(Refer Slide Time: 19:19)

Now, here is a another example of throw clause is the same thing. Here we have declared

one class, the name of the class is throw demo and where there is one method call the

demo proc and in this method, we declare our own try block. Here is try, throw new

interrupted exception. This is basically user defined exception and interrupt occur and

whatever the code, there in the demo proc and then this exception if it is occurs, it will

catch using this catch block and this catch also can throw other expression, is basically

throw and expression to the colour program actually, because it is a procedure whenever

it is called, it will throw to the caller actually.

So, now here this is the caller program here which will call this demo proc and it calls it.

Now, if any exceptions occur, because of the some code here, it will throw and this

exception e we will catch. This exception, which is called by this one here also and this

will print like this. So, they are, there are many usage of this throw exception. More

basic concept here is that, it can throw any exception which user wants to, to throw it in

this program, so that the program is more robust. So, this is the throw concept there in

block.

(Refer Slide Time: 20:51)

And there is again throws also possible in exception handling for, to handle the

exception, to handle the exception in a Java program. Now, for this purpose, the Java

program are propose, an idea about it; so, suppose we want to throws an exception,

whatever it occurs in a method. Let this is the name of the method, where we want to

throws multiple exceptions, then you should use throws clause and then whatever the

exception that you have, you anticipate, you can made it their list.

So, if there is a say array out of bound exception. So, array out of bond exception

comma, if there is a null pointer assignment then comma and so. So, this basically list of

all exception that this throws can throw and so that the corresponding, the catch block

will be there, they can catch it. So, the idea here, it is that this throws command; we will

throw multiple exceptions that may occur in a method.

(Refer Slide Time: 22:06)

Now, so, idea it is now, let us have the one simple example so that we can understand

about this one. Yes, now this program, we have once discussed in our demonstration as

well as while we are discussing about the input output. As we see, in this program there

are many point, where the exception may occurs. Now, let us examine one by one.

So, here is basically if you see, in this part there is no point of exception, but here if you

see, here data inputs stream, in this one. Now, here if suppose, it is not possible to, this

program is not able to create any object of data stream in, then an exception we will

leads, because this in is referred in subsequent here in many a situation. So, if this object

is not created then in the subsequent points, it will raises many exceptions are there at,

this is, because Java is basically an interpretity manner.

So, if this, this fails then; obviously, it will not stop here. It will try to give, execute it and

then in every point it will point out the exception, anyway. So, there is a possibilities that

here an exception may occur in the sense that that in the data input stream object is not

successfully created for some reason and also system dot in, it is basically standard input

sum. Suppose, your keyboard is not working properly while you are running this

program or once input device is not working, which basically may have to system end

then in that case also this object will not be created.

Now, so, these are the basically system dot out dot plus there is no point of which

basically clean the buffer the concept it is there. Now, here you see there is again in read

line, if suppose this buffer is not able to read successfully, for some reason then here also

there will be an exception and here also another exception, if the buffer is not able to

read at this point and here is also another exception if the buffer is not able to read at this

point ok.

So, we see there are three different points, where the exception occurs and in this

particular example only one particular type of exception that occur. Now, you can define

that exception of your own, if you defined then you can mention that in this throw block.

So, that is exception, but here without taking any, what is called risk, we have discussed

the throw exception, any type of exception, if it occurs, in this particular code, then this

throws will throw an expression expressively and then this catch, will catch this

exception e.

So, the idea about that any exception if it occurs here, this throws as it is mentioned here,

will throw the exception in the try block and then corresponding exception, will this one.

Now, here if I do not write this one also and only this part, also it will work. This is a

particular case is that, because there is a; obviously, responsibility of Java runtime

manager. Java manager will automatically take care this part, whenever exception

occurs, but sometimes the exception, which is basically, as per the requirement of the

program.

Say some (Refer Time: 25:46) in this case it is not working of course, but in some

situation. Say suppose, I am telling you one example say in dot read line it is working

correctly, but I want to see that if suppose I have to enter say two digit, two digit number,

if user printer one digit. So, in that case after reading this one I can throw an exception

occurs, according to my own requirement like this one. So, in that case this throws or

here also after seeing these things, we can write throw.

So, out of this, there are many ways actually. So, we can write this one and then do all

these things. We can have this one, not required, but this one or we do not have this one

here, but throw here, throw here, throw here. So, expressively there are many ways the

exceptions can be handle actually.

So, whatever be the way basic idea is, that all this things should be catch, either using

multiple catch or simple catch, whatever it is there. So, this is the idea the concept for the

throw in try catch mechanism. So, we have discussed about many other features

regarding the exception handling in Java and there are many few more in this line. they

are basically, we have discussed only few exception handling concept. Apart from this,

there are many other different exception classes they defined in java dot lang package.

So, those things definitely a programmer should know about it then they can use it for

program in a better wider domain actually, if you want to develop it. And there is also

another possibility Java makes more, what is called the flexible in the sense that it allows

user to define their own exception. Now, in our next module, we will discussed about,

how a user can defined their own exception and then those exception can be handled and

whatever the built in exception classes are there in Java program.

Thank you very much.

