
Programming in Java
Prof. Debasis Samanta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 22
Demonstration – IX

 So, we have learned about interface in last two modules and this is a plan for this

module plans for a I mean quick a demonstration of the different concepts that we have

learnt in our lecture session.

(Refer Slide Time: 00:36)

So, in today’s Demonstrations mainly we have planned that how user can create an

interface and then maintain it in their package. An interface as we have discussed that it

follows certain specific properties so, if all those properties are not satisfied then whether

the interface creation will be successful or not that we will learn it. And then interface is

mainly used for inheritance purpose more specifically it is a multiple inheritance. So,

single inheritance as a multiple inheritance using interface will be discussed. And another

great application of the interface is to provide a dynamic binding in the form of runtime

polymorphism so, that will be discussed.

And then we have also mention that abstract class and the interface has many similarities

between the two. So, what is the difference between the two so, in our last demo that we

will try to clarify further.

(Refer Slide Time: 02:04)

So, let us have the demonstration fast this is regarding how we can create an interface.

So, these are the first program that you can think about how an interface can be created.

So, we have to first create a package where we have to store the interface. let us this is

the name of the package, my interface. We have created a subdirectory name the my

interface where as the interface will be stored there. So, let us go to the subdirectory my

interface and as we see there is one program then you can just open the program.

(Refer Slide Time: 02:22)

So, this a program, yes. So, this is the one program that we have developed just this

program as you see the package statement includes that this my interface is the in the

package named my interface and then the name of the interface as we have mentioned

here with the key word interface the name of the interface is an interface. And in this

interface we include two elements a as a member type integer and then the method

display or we can type void.

And as we see the member elements that we have discussed here we do not have

mentioned explicitly, but as you know in case of interface the member element should be

public, static, as well as final anyway. So, these are the default explicitly you do not have

to mention implicitly also if you do not mention anything in an interface, if it is declared

they will be created as a public, final, static and the method as we have mentioned here

the method should be public and abstract. So, we have we do not have to mention it

explicitly again. If you do it very it is good if you do not do also the java compile time

compiler will take care about it.

So, this is the interface that we have created and we stored this interface in the package

my interface. Now, let us see the application of this interface in our program.

(Refer Slide Time: 03:56)

So, for this we can write one program here as we know an in interface can be used if you

want to use this interface then a class should implement it is. So, this is a first the class

declaration the name of the class is Demonstration underscore 91 implements the an

interface which is in the package my interface we have to input this of course. So, this is

the input statement as we see in the code at the top.

Now, so this method the method in this class demonstration as the implementation of

display because in interface the method display is there. So, we just implement the code

the display here. So, the code includes a simple print statement, fine and as you do not

have to do anything the member element so no issue it is here and in this method the

main method as we see we create an object of the class Demonstration underscore 91 and

then we call the method display is basically interface method it is here.

And also in the last statement you can note it is basically the print state statement in the

main method, but it can access the member elements which is already there in the

interface method a. So, this is the this way this program compares with use and interface

and let us run this program.

(Refer Slide Time: 05:20)

Here in this case main program is Demonstration underscore 91. So, if you run it, so, if

you run it we will see exactly how it works ok.

(Refer Slide Time: 05:42)

So, the program is compiled successfully. So, this program runs it, right. One thing you

can see whenever you create an interface a class file also should be stored there as you

see in the my interface both the interface in the form of dot Java file as well as the dot

class file is also stored there. So, it is the customary as we know the process of package

creation the both dot Java file as well as the class file should be there.

Now, so in the interface as you see that thus keywords public then final static void a

method is not necessary. So, if you put it that will work fine no problem, but if you do

not put it also it will work of it is own no problem. Now, our next demo let us have the

next demonstration after knowing how an interface can be created and then how the

same interface can be used in the program.

So, our next the illustration that the whether we can create any object of the interface

type? Now, so, in this illustration will give you an idea about. Let us consider the an

interface.

(Refer Slide Time: 07:03)

Let us consider an interface C here. So, these is the interface ok, built it here. It can be

stored in any sub directory, in the same directory so, this is the interface. Now, our

objective is to if we attempt to create an object of this interface so, what will happen?

Now, let us see the program that we can write it a class program may be and then we

want to create an object of this.

So, let us have the class program here. So, this is a class program the class file name of

the file is Demonstration underscore 92 and here you see the main method. The main

method is basically in the main method we try to create objects of the type interface there

are many ways we can create. So, in the first statement as we see the C is the interface

type and small c is an object name new C. Here we want to create an object of the

interface C. As we told you as interfaces is an abstract so, no object can be created. So,

definitely this will leads to an error.

And, then so, the last two statement you can make it comment ok. So, we will discuss

about the last one. Now, let us see if we do it whether we can do it or not.

(Refer Slide Time: 08:42)

Now, as you see here is a compilation error in the statement where we have attempted to

create an object of interface C so, it is not possible. So, now, let us again revise the

program so that we can comment this statement and then now other two statement let us

see. Now, others two uncomment it so, other two statement uncomment, now here again.

So, here C is a interface type and it create an object c 2, this is quite ok.

Here basically we so, there are two difference between the first statement and the this

second statement. Second statement is basically create an object and instantiation by

calling the constructor, but here we just simply declare an object c 2 of C type. So, this is

quite possible we are declaring only, but not creating a new object, no instantiation is

involved. In our second case also we can declare an array of types C through array of

interface object, but not any instantiation. So, what we can say is that instantiation of an

interface type is not possible however, declaration of interface object is possible.

So, in that sense the last two statement is correct. Now, let us see if you run it. So, this

program run successfully this means that we can create it. Now, we will see the usage of

this kind of declaration in our next example we will discuss it, not now ok in due time.

(Refer Slide Time: 10:30)

So, now we have discussed about interface; how a interface can be created and then how

the same interface can be used in our class program. Now, as you have told that an

interface should be implemented and in the process of implementation all the methods

which are there in a interface should be implemented successfully. If you do not

implement any method or if we implement one method as a private or something other

type then it should give an error.

So, now, let us have the complete program here. Here in this code we see the first few

declaration about Interface I1. In this interface we declare one field called PI and

declared public static final that is ok. Also we declare another member elements lambda

the floating type. Now, so, this is fine and then also in this method in this interface we

declared on public abstract method by default namely the void method 2; method I2 here

ok.

So, all these things are perfectly it will work because is the as per the specification of the

interface declaration. Now, as we know in case of interface only the member that will be

declared as a static no instance variable is not possible. Now, let us see if you want to

declare a variable say x of type integer and it is declared as 100 and so, these basically

considered as a instance variable. So, this leads to an error if we run this program. Fine,

we run it later on, let us have few more discussion about it here.

(Refer Slide Time: 12:12)

Now, here class A1; class A1 implements I1 and this is a simple implementation where

we have the class A itself its own member A1 and then method 1 its own and then

method 2 is an implementation of the interface method. And as you see as the class A

implements I1 all the elements those are there in interface is readily accessible to this

class A. For example, PI this is accessible via the method of its own method I1. And now

the main class as we see in the main class here we just create an object of class A1 and

then all the methods which basically implements the a A1 including the class A1 own

method is invoked here.

So, this will run successfully, but before running this program that definitely we should

comment the int x. comment int x should be commented here no next one, now fine. So,

this program compilable, as well as executable so, let us quickly compile it and then we

will come back to this program.

(Refer Slide Time: 13:25)

Again making the x as an instance variable and then see whether it work or not. So,

compilation is successful, no error has been reported and then this is the execution of the

program. So, it basically call method I1 and method I2 from the program itself. As you

see method I1 can access the pi which is defined in the interface now let us come back to

the program again and here we are in the process of creating the instance variable here.

So, in int right now. So, here int x equals to 100 as we know that this is basically if you

do not specify the key word that is basically public what is called the public static will be

default there. What about the int x declaration so, this comment keep it here no problem.

this one. Now, let us see that is what this basically creates an instance variable basically

run compile.

(Refer Slide Time: 14:46)

Now, here we can see int x without any initialization it indicates that it is basically as an

it works as an instance variable. So, if we declare without any public static final keyword

it will automatically specify this one but this is only applicable after the initialization.

You should if it is a static variable you should initialize this one. As there is no

initialization it is as an instance variable and no instance variable declaration is allowed

in an interface method. So, this example explain that we cannot declare any instance

variable this one.

Now, here so, we have learned about that a class can implement an interesting and

interface. Now, it is interesting to note whether an interface can implement another

interface or not.

(Refer Slide Time: 15:38)

So, here is an example as we see here I1 is an interface declared with its own member I

as 555 and its own public abstract method namely print interface and here is a second is

there I2 interface basically attempts to implements I1. In fact, all the entire course is

invalid code because I interface I2 cannot implements other interface. Now, if we run

this program then it will report a compilation error.

As you see in the statement interface I2 implements I1 it basically is an error indicated

here. So, instead of interface I2 if we write class I2 implements I1 it will work possibly

and another thing is that in the last statement print interface if we made it we have to

make all the method that needs to be implemented as a public. Suppose if we declare as a

default the print interface method in class I2 yes, just write public term remove ok, fine.

So, here it is default.

Now, let us see no default method implementation is allowed or method implementation

with any other access specifier is not allowed. As we see here in the void interface it

gives an error so, we have to make it public there then only it will be there. Now, a class

can implements another interface if a class implements any methods which is there in a

interface that methods should be declared as a public that we have learnt it here ok, right.

So, we can run it.

(Refer Slide Time: 17:52)

Our next example, whether an interface implements an abstract class? As we know an

abstract class in many ways similar to instan interface that abstract class also can have

the abstract method that mean method without any code and then it also can includes

static variable. So, here you can see in this example a class C is an abstract class as we

have declared and here the static variable is declared as a and it has one method print, but

in case of abstract class we know it can includes both abstract method as well as non

abstract method; in this case it is non abstract method.

Now, if I if we attempt to implement interface this class C that abstract class by using

implements it is basically invalid. Now, if we run this then you will see this program will

not compilable actually. It will give the compilation error as we see interface I2

implement C is basically it is not allowable to implement this one ok. So, no abstract

class also can be implementable using any interface, but a class can be plan to implement

this one.

(Refer Slide Time: 19:19)

Now, one thing is that no method or any variable can be declared final in case of

interface it will leads to an error. Here is an example. Here we can see interface I1 which

has one static variable public final it is as i equals to 55 by default it is final and now, the

method here we can declare you can see we have declared the method as a final and

static. Note, these two key words are not applicable to any method declaration in an

interface only public and abstract is applicable. So, by default it is abstract so, final static

is not possible. So, this code will work only if we remove final and static from this one.

Now, let us have the final static and learn it and one by one if you execute it will see it in

the next code basically class C implements I1 it basically declare its own method public

and then implement the print interface here. As you see there is an error so, the error is a

the modifier final not allowed here. Now, let us remove this modifier final and run it

again keep it static ok. Now, run it again and let us see whether static key word is not

there. Here we can see it also reports an error missing method body or declare abstract.

As you have declare the abstract it is not taking this one. So, if we remove this static

again it will now final, public it is basically, abstract we can write it or not write now it

will work. So, void printed you have to declare public so, that is fine.

So, declare the public in the class implementation as we have not declared the public all

the implementation of the interface method should be declared as a public here ok. So,

fine now this program run successfully. So, there is a mistake regarding the name of the

class file. So, that is why it gives an error that it did not find the class file. Now, we have

changed it, yes ok. We are compiling; yes, compilation is success full in this case running

this program any way.

So, our next illustration anyway. So, the last illustration is not meant for any what is

called a class there, only for the explanation that it will require the few properties to be

satisfied.

(Refer Slide Time: 22:43)

Anyway, so, our next example is basically explain the single inheritance. Now, here let

us have the loop of the code interface I1 with it is public static final variable x and then it

is method 1 and this interface I2 extends I1. So, an interface can be extended from I1, but

cannot implements. Now so, extend means I2 inherits I1 and so, as a process of

inheritance so, it has its own members y and its own method which is also abstract is

declared because it is an interface method. Now, class A1 implements I2 so, whenever I2

come to this picture. So, by virtual of inheritance all the way method that is there I1

method 1 also now inherited to I2. So, here again see in this class A1 implements I2

method as we see we declare one variable in its own. This is the class A1 variable and it

implements method one which is basically inherited from I1 via I2 and then also method

1 and method 2.

And, as you see here x and y are the two members who is belongs to the interface I1 and

I2 and by the process of implementation class A1 has the readily accessible to these

values x and y here.

(Refer Slide Time: 24:18)

So, the main program looks like here we create an object of class A 1 and then we call

the method, method 1 and method 2. So, if we call so, all the methods and then they are

variables those are there in the interface will be readily accessible to this one. So, let us

have a quick execution of this program followed by the compilation.

So, we can see yes, we can see that this program is now successfully executed and

compilation there is no error there. Now, so, this is the idea about single inheritance;

now, let us have the demonstration on multiple inheritance.

(Refer Slide Time: 24:56)

Here again I1 is an interface as we declare one of the static variable I here and print run

method in interface I2 interface I2 is a again with there is again j as a static variable and

print I2 methods are there. Now, multiple inheritance here as we see class A implements

I1 and I2. So, this is basically the idea about how multiply a class can inherits both from

I1 and I2. In the last example we see that I2 inherits I1 then class implements I2. Here

basically class A can implements I1 and I2 here I2 is not necessarily inherit from I1 it

basically.

So, here as the number of inheritance can be implemented by a single class; for example,

class A implements I1 I2 and I 3 and so, on we can write this one. Now, in this class

implementation as we see A value is the value of the class variable A and then print 1 is

an implementation of class interface I1 print I2 is an implementation of interface method

I2 and finally, the print A is a class A methods who is basically have the full access of the

static variable those are there in interfaces i and j namely.

So, this is the program as we can see the multiple inheritance by the process of multiple

inheritance we can access all methods those are there in interface as well as all variables

those are there in the interfaces ok. As we see this program run successfully, now there is

an alternative way of doing multiple inheritance our next demonstration is to explain this

one.

(Refer Slide Time: 26:47)

In the last example as we see class A 1 implements I1 and I2. Now, both extends and

implements can be added there; this is also one way of inheritance multiple inheritance.

In this example as we see class A is a class and interface I is an interface and will see is

the class B extends class A; that means, it inherit the super class A as well as implements

I it is also inherits basically the some variable as well as method.

However, this implementation as it is class B should implements I the method print

should be defined here in this class as we have see the public void where is a print

interface method. So, as we see interface I the print interface method is being

implemented here that print and then call it here and class B basically ok. So, it

implements the print interface method in interface and then print B is basically its own

constructer who is basically call the class A constructor; that means, super class

constructor using the super key word and then also call print interface methods because,

this constructor has the access of because of the implementation. And the main class is

very simple here. The demonstration underscore 99 is the implementation of this where

we can create an object of class B and then we can call the print B the method of the

class B.

So, this is the one example as we see the multiple inheritance by means of extending I

mean inheriting a super class as well as implementing an interface. Now, there is another

cases where it can extends on class A implements two or more interface at the same time.

(Refer Slide Time: 28:48)

So, this example is here class A is a class interface C and D are the two interfaces and

you see is a multiple inheritance form where class B extends A, that mean A is the super

class, class B derived from A as well as is implement C and D that mean class B also

inherits from C and D. That means, that all the static variable those are there in C and D

namely j and k is also accessible as well as the variable which is protected in class is also

accessible. So, we can see this method that is there or this class or main method we can

say can access all the elements by means of this multiple inheritance. So, this is a one

simple main method as we see here we create an object B which is a basically derived

based on the multiple inheritance and then call the method print B ok.

So, this is the different way that we can see that how multiple inheritance is possible with

the help of interface as well as class A. Now, what is the usage of this interface we can

do the multiple inheritance, this is the one application. Our next example basically

explain our next example explain that the usage of the interface; in fact, interface can

helps to support the shared variable to use across the many pack many packages or many

classes in different packages.

(Refer Slide Time: 30:38)

So, here is an example as you see the interface includes declarations of some variable go

to the interface in package my interface go to the my interface. So, we have declared one

interface here. This interface includes some static variable which is declared here; NO,

YES, MAYBE this one. Now, so once this interface is declared and then stored in the

package, then any other class can use them as a global variable look like so; that means,

it is called as shared variable in that sense.

(Refer Slide Time: 31:10)

Now, here is an example of one class which use basically interface; that means the class

question implements all this shared constant to the basic global variable we can say. And

in this case is basically you see without any declaration it basically used return YES,

return LATER, return SOON all these things and here is a simple code we can use the

random function which is defined in java dot util it will basically generate a random

number and based on the random number generation it will print all these values

depending on the random probabilities.

(Refer Slide Time: 31:34)

Now, here this is the another class which basically use the same things here and we

define another method called answer and it basically take the results first do it and based

on the result it will execute this codes are there. Now, let us have the quick method. In

this class is as we see go to the next, so this method is basically create an object of

question class which is declared which use the interface or implements the interface.

And then for this class we use the ask method. Ask method generate a random number

based on the random number it will print either YES, No, SOON, NEVER, maybe all

like this one. If we run this program let us see what is the output it will give. It will give

the output as it is a probabilistic one. So, different execution will keep you not

necessarily give the same output in this case ok. In this case we can see this is the output.

If we run the same program again we may see different output like this one if we run

again it can give another output and so on.

So, it is basically probabilistic program by means of generating random number, but it

will discussed about how the shared variable can be used across the different classes.

Now, we have to discuss in the ok, what is the difference between interface object and

then abstract class interface type and then abstract class declaration.

(Refer Slide Time: 33:09)

Now, we have let us have the one program here and it is basically idea about the

inheritance and by means of inheritance we can create many objects there and let us go

to the main class ok. First discuss about the interface class here. Interface class go to the

interface class interface go to the interface, fine no not this is the interface right ok.

(Refer Slide Time: 33:44)

So, now, this interface is defined in my package in the package myInterface. The name of

the interface is GeoAnalyzer as you see this geointerface geo analyzer interface has one

static variable namely pi and then two public abstract method area and perimeter. So, this

method is basically the type and now we want to create few classes which implements

GeoAnalyzer namely circle, ellipse and rectangle. So, this is the implementation of circle

class which implements GeoAnalyzer; this is the implementation of ellipse class which is

an implementation of GeoAnalyzer and GeoAnalyzer this is the implementation of

rectangle class which is the implementation of the GeoAnalyzer it has its own this one

and this one ok.

So, now, we see the different class implements the GeoAnalyzer interface by the

different methods actually in their own way; circle has its own implementation, ellipse

has its own implementation, rectangle has its own implementation. Once this

implementation is done now we can come to the main program which basically create

the objects of this.

Now, here we can see the demonstration 912 is the main class and there is basically the

method includes a display which basically take x and y, namely the area and perimeter of

the geo objects. And here we can see we have created three objects; one object c of type

class c, another object e of class Ellipse and another object r of class Rectangle.

Now, here Geoanalyzer geoItem the interface and geoItem is an object of interface we

can just declare. So, we have declared and then once it is declared we see it basically

holds the class c, basically the upcasting c is equal to geo item. Now, if we do this then

we can call the display method which is defined in the main method by calling this

geoItem and dot area and geoItem dot perimeter. Similarly, if the geoItem holds the

reference to ellipse object, then also same method can print it. But, in this case this geo

the display geoItem area for the referencing of ellipse object call the method area which

is declared in ellipse class.

And, then again if it reference to rectangle and then display area of this one, it also

reference to the methods those are there in interface rectangle in the class rectangle.

Now, here we can see the display method is basically binded polymorphism. The

different the display method can display area, perimeter for the different objects as per

the references there. So, it is the great example of polymorphism by means of interface.

Now, this program if we run it will work for us, now again repeat the same thing, but

using the abstract class. So, in the previous case we have discussed about Geoanalyzer as

an interface we just want to do the same thing by means of abstract.

(Refer Slide Time: 37:08)

Here is basically this abstract class is declared in a package let us have the package it is

there ok. So, these abstract class is declared here go to the abstract class there geo

geometry. So, here we can see public abstract class geometry is an abstract class here and

here we define two methods and abstract method abstract as you know the abstract

method means no code is there just look like a very similar to interface.

Now, this basically example to illustrate the similarity and dissimilarity between

interface and abstract it is there. Now, let us have the second same way of class

implementation it is basically extends because circle should extends geometry here we

can see circle. Now, the difference we can note in the previous case circle implements

Geoanalyzer, but here geometry being an abstract class we cannot implement, we just

simply circle extends geometry. Likewise, Ellipse extends geometry and then Rectangle

extends geometry as a process of extension is basically single inheritance as you know.

So, it basically inheritance or you can say override the method those are there in abstract

method incase of geometry. So, these are the three implementation of three classes

extending the geometry object and finally, the main class here demonstration underscore

9.13 so, this is the main class.

(Refer Slide Time: 38:35)

As you see the main class here it is more or less similar the previous example using

interface. Geometry we create we basically declare an array of what is called the objects

of geoObjects of type here three array size is three here array of abstract class method we

can say just the interface objects we have created in case of interface in case of abstract

class also the object can be created as we see here. And, then geoObject 0 we create an

instance of the class circle and then it is basically assign to the location 0 and similarly a

rectangle instance and ellipse instance are created and we call the we pass the parameter

to I mean instance share them properly.

So, these are the instantiation and instantiation, but after the instantiation they are

basically referred in the abstract class object like geoObject in this case and here again

runtime polymorphism as we see in the next for loop. So, here total area geoObjects i dot

area. Now, for i equals to 0 so, this will this dot area refer to circle objects on the other

hand for i equals to 1, this area refer to the Rectangle objects and then for i equals to 2

this area refers to Ellipse object. So, again it is an example of runtime polymorphism.

Because it is polymorphycally resolved that different method depending on the objects it

is there although it looks like same for all calls actually and if you run it the similar to the

interface it will run and then give the execution ok.

So, this is the right. So, this is the successful execution of the program. So, what we have

learnt about here that more or less interface and abstract behaves in the same manner,

then why java developer maintains both the thing? The difference only here is that

abstract class if you declare it cannot be multiple inheritance or whenever an inheritance

interface is there it can be multiple inheritance. So, this is the only difference between

the abstract class and the interface otherwise both the concepts are more or less same.

So, we have learned about the interface and if you have further any doubt you are most

welcome to post your queries and all the programs those we have used in their

demonstrations you are free to use it and then test it so that you can practice it much

more.

So, thank you very much.

