
 Programming in Java
Prof. Debasis Samanta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 21
Interface -II

So, this is the second part of our discussion on interface, in the last module we have

discussed the Interface and basically introduces the basic concepts that is there in

interface in Java. So, today we will discuss some more advanced features are there in the

interface and finally, we will summarize the lessons that we have learnt so far the

interface is concerned. So, there are like different classes built in classes. So, there are

also some standard interfaces available in Java.

(Refer Slide Time: 00:52)

So, the there are few of course not many. So, the important the mostly used interfaces

those are already defined they are called the built in interfaces like here, iterator,

cloneable, serializable, comparable, these are the most frequently interfaces. So, in our

subsequent few slides we will go through each interface quickly and then understand

what they can do for us.

(Refer Slide Time: 01:23)

So, let us have the discussion on iterator. So, iterator interface is basically if there is a

collection of objects right and then how these collection of objects can be processed. So,

regarding these things the iterator interface which has been defined in java dot util

package. So, in the java dot util package this interface basically help us to manage the set

of objects we can say the collection of objects.

Here the interface the name is iterator as we see here this is the name of the Interface

Iterator which has few methods as we see here has next the next and the remove. So,

there the 3 standard methods are there in iterator and you can use this interface to

implement our own class here is an example for example, how these interface can be

used in implement our own class. Here we can create we can just implement using the

concept this is the class this may be say example Iterator implements Iterator and then

here myShapes is the shape of some objects that you want to have it in the shape

geometry and then this is the iterator object is created.

Now here if you see for this Iterator, Iterator dot hasNext; that means, it will

automatically check the shapes the collection of objects and then it will check that

whether the next in the list of collection the element is there or not. So, here hasNext is

basically the method that is there in the interface is basically implements it and then this

is the implementation how it will work there. So, hasNext next similarly remove is

basically another interface to remove an object from a collection. So, this is the one

example of iterator interface that is there in java more specifically in java dot util

package.

(Refer Slide Time: 03:27)

Now, cloneable is another interface is basically this interface is basically to implement a

class which can create a copy of an object. So, it is a cloneable means it will basically

make a copy of the objects, as you see here the his interface. In fact, is a new application

it does not have any method it is basically empty and it basically helps us to have the

copy of an objects their copy maybe 2 types; one shallow copy and deep copy. If the

shallow copy it will just logically make a copy and the deep copy means physically make

a copy; that means, for all objects reference variables, class variables, instance variable,

everything they will make a separate instances or copy of the same object. So, 2 objects

will be created having the same things are there.

In some situations the duplicate (Refer Time: 04:26) of the objects needs to be controlled

and so, cloneable interface can be called for this purpose and in case suppose this

interface does not work it throws exception. So, this exception regarding we will learn

about it. So, anyway if there is any mistake regarding the copying an objects, sometimes

there may not be any permission or copy is not successful, whatever it is there in that

case it will throw an exception which is for the preparing the robust program actually.

So, this is the cloneable interface and then example here.

(Refer Slide Time: 05:05)

We can consider one example here this example is basically show how the cloneable

interface can be used here.

Say for example, here basically the Car is a class which implements the Cloneable these

are the methods in this class Car and then here you can see these objects we create a

objects of type and then clone is the method that we have discussed here and this method

is basically make a copy, explicitly that is mean by the class declaration by the user. So,

this is the one example how the Cloneable interface can be used in Java class declaration.

(Refer Slide Time: 05:44)

And the next is serializable interface, this interface is basically helps a programmer to

build their classes while they want to communicate or send some objects over a network

to a distance objects or distant pc distant server whatever it is there.

So, this basically helps to make the things called the serializable and here is a quick

example of the serializable in again from the Car is the class support it implements serial

serializable interface whatever the methods we have discussed in the next class we can

copy it verbatim here. So, this will complete the class declaration and here is an example

how the Serialization Serializable interface can be used in the machine. Here you can see

we create the object for writing or reading, from the writing from the net network

channel or reading into the network channel or writing into some file or reading from the

file.

So, these basically all the methods that we have discussed that is there as an abstract

method interface can be redefined here in the class declaration and can be used here. So,

this is an example of serializable interface and then finally, the idea about the comparable

interface.

(Refer Slide Time: 07: 08)

So, here is an example of comparable means sometimes it is required to compare 2

objects whether they are same or different. So, if it is like this. So, Java developer has

proposed one interface called the comparable interface and here is an example of this

compare interface and we see how it the method that is compared to which is basically

interface method we redefined here in our class declaration.

So, this is basically the user defined redeclaration for the interface method and it

basically compare objects. So obviously, it is up to the user for comparing the different

objects how you can compare one objects with other objects belong to the same class

whatever it is there. So, this will written Boolean values whether true or false like. So,

this is the interface comparable that is defined in the again all the this is also defined in

the java dot util dot package.

Now so, these are the few standard interface usually programmer prefer to have their

own interface related to the particular project and use them in their program, other than

using the standard interface those are there in the Java system. Now this basically covers

all the basic concepts about the interface and before concluding this interface concepts I

just want to highlights few more important things which is very important to remember

whenever you are handling with interface.

(Refer Slide Time: 08:45)

So, the defining an interface as you have learnt that an interface can be defined using the

special keyword that is there in the Java is called the interface. So, here basically the

basic syntax is the interface declaration by using the interface and giving the name of the

interface and then this is the body of the interface. Now, so far the body of the interface

is concerned this body includes few things.

(Refer Slide Time: 09:10)

The variables or members and the methods and as you have already mentioned that, the

methods which should be there in the interface should be declared as a public and

abstract there; that means, the method should have the only signature giving the name

return type then parameter list and no body of the method. On the other hand so far the

members are concerned the member should be declared as public, final, static and they

can be initialized by some values actually the methods the variables or members which

are there in a interface they should be treated as a global.

So, if any class which implements this interface has the complete access to all the

members that is there in the interface and the methods needs to redefine the class which

implements an interface. And as I already mentioned while I was discussing about the

interface that if you do not declare a method as abstract or is a fine abstract or public by

default it will be taken as a public and abstract and more one important concept is that no

methods should not be declared as a static. So, static method is not allowed in any

interface declaration. So, these are the few rule of thumbs that you should consider while

you are declaring your own interface in your program.

(Refer Slide Time: 10:42)

Now once the interface is defined this interface needs to be implemented. So, this

implementation is by virtue of declaring a class, here is an example how an interface can

be implemented. So, the basic rule is that an inter say this is the class name which

basically implements interface and here there are two things are optional extends clause

is optional and then also it can at one time interface two or more interfaces implements

two or more interfaces. So, this basic idea is that a class can inherit from the other class

that is why the extends clause will take care and at the same time it can implements one

or more interfaces so, this is the concept.

So, then now we have demonstration in our next module to discuss about how all those

things works together and as I mentioned there this class that we should have and that

class should be declared as a public there means be this should be public here for

example, declare as a default it is not allowed. So, you have to mention that this is the

public.

Now there are few cautions that needs to be taken care whenever we implement an

interface is that if an interface in if a class implements two or more interfaces which has

the same method and then that methods should be overridden by the class and it has only

one copy. Now, when we say that same method it means that the methods which are

declared as an abstract in the interface they have the same return type same method name

and same list of parameters.

If anyone is different the method should be treated as different and then different in

implementation in the class is required. So, this is the important thing that you should

consider and the methods which basically implemented in your class also that needs to

be declared as a public, because these methods should be accessible by anyone. So, no

private, no protected method as an implementation is allowed in the class

implementation. So, these are few thing that you should note while you are considering

the implementing interfaces.

(Refer Slide Time: 13:02)

Now, here is a quick example here you can see that how an interface can be implemented

by a class, in this case the name of the class is Client and here you see this is the

Callback method which is there in the interface and we implement this method as a

public and then whatever that I. And while we implement at the assembly we have to

consider the return type and the list of parameter should match these which are there in

your interface declaration, otherwise this will treat as a completely new methods the

methods of it is own in this class itself, what I want to say here is that. In fact, we are to

overwrite the methods, which is declared as an abstract and public method in the

interface declaration ok.

(Refer Slide Time: 13:57)

So, this is some standards procedure that needs to be follow while we are using the

implementation of an interface by a class. Now here is another example that we can say

again this is a class Client which implements the Callback, Callback is an interface here.

So, this is the method that we have declared in the interface and implemented here and at

the same time the class which implements an interface it may contains, it may contain, it

may include it is own method as well the methods that is overridden in the interface.

So, for example, here this is one method which is the own method in this class client;

that means, it just like a inheritance concept like. So, it is basically one other way you

can say that this class clients inherits the Callback where the Callback is an abstract class

we can say in that sense. So, this is the idea about how a class can implement this means

that implement means the methods should be overridden and it can includes it is own

methods if required and no variable should be declared with the same name as that is

there in the interface there. So, the method should be in fact, because it is a static and

public declared in the interface. So, we cannot redeclare or redefine the same variable

name or members in the class implementation ok.

(Refer Slide Time: 15:31)

So, this is the idea about some implementation of the interface by means of a class and

Java also allow partial implementation. Say suppose in an interface there are two

methods and you implements this interface by means of a class only one method, then

this class can be treated an abstract class; that means, no that means, that means, no

objects can be created for this class until you override all the methods which are there in

the interface. So, you have to override all the methods so, that you can create an object or

you can complete the implementation of an interface in a class.

(Refer Slide Time: 16:15)

And in Java also it is possible to allow nested interface, what is the meaning of nested

interface is that an interface can be declared inside a class declaration. This means that

this interface is a very much local to this class itself; that means, no one class outside this

in class is responsible for implementing this interface. This is the concept of it is called

the nested interface, this is a very restrictive use in the program usually we avoid it, but

sometimes we want to make an interface which is a very explicit to a particular class

only then we can think for this kind of implementation otherwise you can ignore it.

Anyway this is an example how the nested if is possible.

(Refer Slide Time: 17:10)

Now let us look at this small program here and this is the class A declaration as usual the

standard normal class and you can see within this normal class we declare an interface

this is the interface. So, we declare as an interface as NestedIf and this has the this

method is an abstract method and then we can inside this class as you have the interface,

interface does not have any utilization until you implements it. So, here is the class B

which implements this is the NestedIf and you can see one thing that NestedIf we have

expansion A dot, there is a special location specification that A dot means it is the

interface which is declaring the class A.

If you do not do in this case it will work, but in some situations if inside A class there

more than interface then better to do it like this one. So, otherwise if some interface

already in the same name appears somewhere else then it can give a what is called the

ambiguity. So, in order to resolve this we have to explicitly mention that this interface

belongs to which class. So, that is why the specific location mention that is A dot

NestedIf means that this is a NestedIf inside the class A.

So, this way we can define it and then finally, we can implement the interface that is

there using the usual concept and then same can be used in your main class wherever you

want to use it. So, it is the basic idea about that it is just like a scope of this interface

which is a nested interface inside a class is basically the static scope and it can be

resolved seeing the program itself and is a local, local to this class itself.

(Refer Slide Time: 19:04)

Now, let us have a very simple example about, what is the utilization of an interface?

Why we go for an interface? What is the usage of the interface? It has 2 important

applications; one is that whenever you use an interface it will it may if it includes some

members which are declared as a final, static and then a final static public they can be

used as a global variable look like and this variable can be shared. So, it is just like a

library of different variables that can be shareable from one class to another class.

So, this is a one example and another example; obviously, the great example the most

significant example that we can inherit in a multiple sense as you know Java does not

support single inheritance, but in an indirect way Java also helps a programmer to have

the multiple inheritance implementation. These are the two main usage and one usage

also it is there runtime polymorphism; that means, that will be discussed while we will

go for demonstrating the application of interface in our next module. Now let us have the

first example that how a variable can be shared across the classes if they are maintained

in an interface.

This is an example for like. So, suppose we want to we in this example here we can say

we declare an interface the name of the interface as the shared constants and these are the

different values and by default they are public static automatically there. So, they are

public static int and these are the different value variables and the values are there. So,

these are the basically we can say this as they are basically static variable sort of things;

that means, they are global look like. So, they can be used one instances in everywhere

there. So, these are the global variable look like as you can see in a more simple way. So,

whenever we declared all these value were members in an interface they can be

considered as a global variable look like.

(Refer Slide Time: 21:25)

Now, once these methods are declared we can use them in a program. So, we can just

create a program look like. So, this is the one class the name of the class is implements.

This class is questions which implements shared constant and basically it uses all these

variable names as you can see here. Now here in this class we define one ask method

which has this kind of structure.

 So, if you go through the program you will be able to understand what exactly the ask

question is there, it basically takes a random number and this random number is called

prob and depending on the value of the prob it basically return NO. YES, LATER,

SOON, all these methods are all these members are which is already declared in the

interface. So, this is the idea about a simple example of course, that all these methods as

they are they will be used here as if there is a global.

 Now so, this is the way that an interface can be used in this case and here is the

complete program that you can see how this program can be used.

(Refer Slide Time: 22:28)

This is a simple example another class ask me which implements shared constant which

use the previous asked method and it has it is own body it is there and then this is the

main methods which basically utilization of all the method in the last slides the ask

method in this slides the answer method and it basically code this one. If you run this

program it will be an interesting output which will be discussed while I will go for the

demonstration in the next module ok.

So, these basically shows emphasized that if you declare an interface then all the

members those are there is basically will be used as a shared variable across the different

classes.

(Refer Slide Time: 23:13)

And interface can be extended we have already discussed about these that. So, an

interface truly works like a class as the class can extend another class so, an interface

also can extend another class. So, suppose here the interface A and interface B using the

same extends. So, we can extend the class; that means, in this interface all the method

that is there or all the members which are there in the interface will be also inherited in

this one. So, the basic concept is same as the class inheritance also applicable to the

inheritance.

So, again I want to repeat it that an interface in mostly can be treated as a class look like;

that means, whatever the procedure that we can follow for class it can be only the

exception is that for a class an object can be created; however, for an inter interface no

object can be created that is all.

(Refer Slide Time: 24:11)

So, this is the one idea where the interface can be extended and here is a complete idea is

that on the interface extended the inherited interface can be implemented by means of a

class. So, this is the one example that basically explains how the inherited interface can

be implements. So, both the superclass interface super interface as well as the derived

interface can be used for implementation by another class. And then the multiple

inheritance is the significant what is called the use of the inheritance concept here.

(Refer Slide Time: 24:46)

So, here is a example that multiple inheritance means one interface can extends two or

more interface, but it is not exactly the extent rather it is basically the implements

actually. So, if we can plan a class which implements two or more interface then we can

say that this class in fact, multiply inherits two interfaces. So, the concept is there and the

concept is there in the class itself the multiple inheritance can be realized.

(Refer Slide Time: 25:15)

Now here few things have to be more few things have to be carefully noted first of all the

class suppose implements 2 interface i 1 andi 2 and there is a method say m which is

declared in both the interfaces. Then in the implemented class which methods needs to

be implemented in this regard I want to say this way that if the 2 methods are same the 2

methods are same in the interface in the sense that they have the same return type and

then same list of arguments, having the same type then it basically absolute no problem

you have to override only once.

Otherwise, all the methods which are there we have to override in the implementation

class implementation of the interface. So, this way it basically multiple implements all

the interfaces they are by multiple inheritance it is like this one.

(Refer Slide Time: 26:23)

There is another also example where we can have the class extends one class and

implements another this is also one example of multiple inheritance in there. So, by class

extends for example, class B extends class A and implements interface i then it basically

is a multiple inheritance concept it is there; that means, it extents class B A means that B

will inherit all the methods and members those are accessible to the class A class B it is

there in addition to the interface methods and the interface variable also accessible to the

class there.

Now, again another important rule that if the two interface have the same variable

declaration then it will give a compilation error that you have to somehow take care

check that the two interface does not declare the same members variables in duplicate in

the two interfaces or more than interfaces which are basically in used in multiple

inheritance and multiple inheritance is not limited to only two interfaces any number of

interfaces can be considered. So, a class can implements two three or many interfaces at

the same time, but extends whenever it come into the picture it can extends only one

class that is the important what is called the things that you should note ok.

(Refer Slide Time: 27:47)

So, this is a concept that and if you want to specify explicitly some interface and then

again the super keyword can be used. So, here is an example for example, super method

name is basically in the InterfaceName we can discuss about if it inherits from others

name to resolve the ambiguity if any. So, the super concept it is basically same way it is

basically namespace collision resolution as well as the method resolution. So, this is the

same concept also extendable to the interface here.

(Refer Slide Time: 28:19)

Now, we have learned about the interface and then more on the interface will be

discussed while we will have a quick demo on the interface and we advise you to have

the good lessons in the interface demonstration.

Now, our next topic that we are going to cover is very important topic that this topic is

basically to address the questions that I have mentioned here. So, there definitely is a big

question that how a Java programmer a software programmer can develop the program

which is very much robust; that means, fault free tolerant program. And then there are

many errors and particularly it is the concern whenever the program size is increased

from lows low size low volume to high volume because as the code size will increase the

number of errors possibility will increase so, how to deal with this situation. So, all these

things will be discussed in our next discussion that discussion is called multiple is called

exception handling concept.

Thank you; thank you very much.

