Programming in Java
Prof. Debasis Samanta
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture — 21
Interface -I11

So, this is the second part of our discussion on interface, in the last module we have
discussed the Interface and basically introduces the basic concepts that is there in
interface in Java. So, today we will discuss some more advanced features are there in the
interface and finally, we will summarize the lessons that we have learnt so far the
interface is concerned. So, there are like different classes built in classes. So, there are

also some standard interfaces available in Java.
(Refer Slide Time: 00:52)

o ...
@ s0me of Java's Most used interfaces

+ To run through a collection of objects without knowing how the objects
are stored, for example, in array, list, bag, or set.

[terator

* To make a copy of an existing object via the elone () method on the
class Object.

Cloneable

+ Pack a web of objects such that it can be send over a network or stored to
disk. A naturally later be restored as a web of abjects Comparable.

Serializable
Comparable « To make a total order of objects, for example, 3, 56, 67, 879, 3422, 34234

NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES L e B R e B

So, the there are few of course not many. So, the important the mostly used interfaces
those are already defined they are called the built in interfaces like here, iterator,
cloneable, serializable, comparable, these are the most frequently interfaces. So, in our
subsequent few slides we will go through each interface quickly and then understand

what they can do for us.

(Refer Slide Time: 01:23)

T,
@ 1terator interface

The lterator interface in the package java.util is a basic iterator that works on
collections.

package java.util.*;

public interface Iterator {
public abstract boolean hasNext();
Object nexti{):
vold remove();

myShapes = getSomeCollectionOfShapes(); // Has set of objects
Iterator iter y'.l..\-,.u:,i'.--:_n.u“;
while (iter.hasNext()) {
Shape 2 w (Shape) iter.next();

1. draw() ;

' NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES PR eSS ED

So, let us have the discussion on iterator. So, iterator interface is basically if there is a
collection of objects right and then how these collection of objects can be processed. So,
regarding these things the iterator interface which has been defined in java dot util
package. So, in the java dot util package this interface basically help us to manage the set

of objects we can say the collection of objects.

Here the interface the name is iterator as we see here this is the name of the Interface
Iterator which has few methods as we see here has next the next and the remove. So,
there the 3 standard methods are there in iterator and you can use this interface to
implement our own class here is an example for example, how these interface can be
used in implement our own class. Here we can create we can just implement using the
concept this is the class this may be say example Iterator implements Iterator and then
here myShapes is the shape of some objects that you want to have it in the shape

geometry and then this is the iterator object is created.

Now here if you see for this Iterator, Iterator dot hasNext; that means, it will
automatically check the shapes the collection of objects and then it will check that
whether the next in the list of collection the element is there or not. So, here hasNext is
basically the method that is there in the interface is basically implements it and then this
is the implementation how it will work there. So, hasNext next similarly remove is

basically another interface to remove an object from a collection. So, this is the one

example of iterator interface that is there in java more specifically in java dot util

package.
(Refer Slide Time: 03:27)

o .
@ Cloneable interface

+ Aclass X that implements the Cloneable interface tells that the objects of class X can be
cloned.

+ The interface is empty, that is, it has no method.

* Returns an identical copy of an object,
Ashallow copy, by default.
7 Adeep copy is often preferable.
+ Prevention of cloning
Necessary, il unique attribute, for example, database lock or open file reference.

7 Not sufficient to omit to implement Cloneable.
Sub classes might implement it -] ﬂ

.f L

7 Clone method should throw an exception: \ 4
* CloneNotSupportedException e 3
A
'~ NPTELONLINE VA
T KHARAGPUR CERTIFICATION COURSES L B
Sy

Now, cloneable is another interface is basically this interface is basically to implement a

class which can create a copy of an object. So, it is a cloneable means it will basically
make a copy of the objects, as you see here the his interface. In fact, is a new application
it does not have any method it is basically empty and it basically helps us to have the
copy of an objects their copy maybe 2 types; one shallow copy and deep copy. If the
shallow copy it will just logically make a copy and the deep copy means physically make
a copy; that means, for all objects reference variables, class variables, instance variable,
everything they will make a separate instances or copy of the same object. So, 2 objects

will be created having the same things are there.

In some situations the duplicate (Refer Time: 04:26) of the objects needs to be controlled
and so, cloneable interface can be called for this purpose and in case suppose this
interface does not work it throws exception. So, this exception regarding we will learn
about it. So, anyway if there is any mistake regarding the copying an objects, sometimes
there may not be any permission or copy is not successful, whatever it is there in that
case it will throw an exception which is for the preparing the robust program actually.

So, this is the cloneable interface and then example here.

(Refer Slide Time: 05:05)

S S I
@ cloneable Interface: Example

public class Car implements Cloneable(

rivate String make;

rivate String model;

rivate double price;

ublic Car{) {// default
this("", ",)i

}
Jiv asonable values t 1stance variable
public Car(String make, String model, double price){
this.make = make;
this.model = model ;
this.price = price;
}
public Object clone(}(// th neable erface
return new Car(this.make, this.model, this.price);
}

i NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES L

We can consider one example here this example is basically show how the cloneable

interface can be used here.

Say for example, here basically the Car is a class which implements the Cloneable these
are the methods in this class Car and then here you can see these objects we create a
objects of type and then clone is the method that we have discussed here and this method
is basically make a copy, explicitly that is mean by the class declaration by the user. So,

this is the one example how the Cloneable interface can be used in Java class declaration.

(Refer Slide Time: 05:44)

o —-....
@serializable inferface

public class Car implements Serializable {

I

import java.i
public cl:
Car myT R
myToyota = new Car(*Toyota”, ")i v A class X that implements the
ObjectOutputStream out = getOutpuk () T .
(nyToyota) Scrializable interface tells
ObjectInputStream in = getInput(); ﬂlicn[s |hul X 15 can hC
stored on a Bl or other

rializeDemof

ta, anotherToyota;

anotherToyota m (Car)in.readObject();

that is,

_ NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES

And the next is serializable interface, this interface is basically helps a programmer to
build their classes while they want to communicate or send some objects over a network

to a distance objects or distant pc distant server whatever it is there.

So, this basically helps to make the things called the serializable and here is a quick
example of the serializable in again from the Car is the class support it implements serial
serializable interface whatever the methods we have discussed in the next class we can
copy it verbatim here. So, this will complete the class declaration and here is an example
how the Serialization Serializable interface can be used in the machine. Here you can see
we create the object for writing or reading, from the writing from the net network
channel or reading into the network channel or writing into some file or reading from the

file.

So, these basically all the methods that we have discussed that is there as an abstract
method interface can be redefined here in the class declaration and can be used here. So,
this is an example of serializable interface and then finally, the idea about the comparable

interface.

(Refer Slide Time: 07: 08)

- e
@ conparable inferface: Example

public class [PAddress implements Comparableq
private int[] n; red, e.g

aTo(Object o) (
m (IPAddress) o;

i n.length; i+4)}{

if (this.getWum(i) < other.getBum(i)){
result m =1;
break;

i

if (this.getNum(i) > other.getNum(i)){
result m |;
break;

|

1

return result;

" ' NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

So, here is an example of comparable means sometimes it is required to compare 2
objects whether they are same or different. So, if it is like this. So, Java developer has

proposed one interface called the comparable interface and here is an example of this

compare interface and we see how it the method that is compared to which is basically

interface method we redefined here in our class declaration.

So, this is basically the user defined redeclaration for the interface method and it
basically compare objects. So obviously, it is up to the user for comparing the different
objects how you can compare one objects with other objects belong to the same class
whatever it is there. So, this will written Boolean values whether true or false like. So,
this is the interface comparable that is defined in the again all the this is also defined in

the java dot util dot package.

Now so, these are the few standard interface usually programmer prefer to have their
own interface related to the particular project and use them in their program, other than
using the standard interface those are there in the Java system. Now this basically covers
all the basic concepts about the interface and before concluding this interface concepts I
just want to highlights few more important things which is very important to remember

whenever you are handling with interface.
(Refer Slide Time: 08:45)

e
@ Defining an interface

* Defining an interface is similar to creating a new class.
* An interface definition has two components: the interface declaration and the interface
body.
interfaceDeclaration

interfaceBody

The interfaceDeclaration declares various attributes about the interface such as
its name and whether 1t extends another interface, etc.

» The interfaceBody contains the constant and method declarations within the
interface.

! NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES S R

So, the defining an interface as you have learnt that an interface can be defined using the
special keyword that is there in the Java is called the interface. So, here basically the
basic syntax is the interface declaration by using the interface and giving the name of the
interface and then this is the body of the interface. Now, so far the body of the interface

is concerned this body includes few things.

(Refer Slide Time: 09:10)

o e
@ Deiining an interface

public interface StockWatcher
{
final String sunTicker = "SUNW";
final String oraclaTicker = "
final String ciscoTicker = " /
void valueChanged (String tickerSymbol, double newValue);

}

If you do not specify that your interface is public, your interface will be accessible only
to classes that are defined in the same package as the interface.

' NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES B e e

The variables or members and the methods and as you have already mentioned that, the
methods which should be there in the interface should be declared as a public and
abstract there; that means, the method should have the only signature giving the name
return type then parameter list and no body of the method. On the other hand so far the
members are concerned the member should be declared as public, final, static and they
can be initialized by some values actually the methods the variables or members which

are there in a interface they should be treated as a global.

So, if any class which implements this interface has the complete access to all the
members that is there in the interface and the methods needs to redefine the class which
implements an interface. And as I already mentioned while I was discussing about the
interface that if you do not declare a method as abstract or is a fine abstract or public by
default it will be taken as a public and abstract and more one important concept is that no
methods should not be declared as a static. So, static method is not allowed in any
interface declaration. So, these are the few rule of thumbs that you should consider while

you are declaring your own interface in your program.

(Refer Slide Time: 10:42)

- e
@ implementing an interfaces

To implement an interface, include the implements clause in a class definition, and then
create the methods required by the interface. The general form of a class that includes the
implements clause looks like this:

classname [extends superclass] [implements interface [,interface...]]

that declare the same method, then that method will be
ents of either interface

' NPTELONLINE

IIT KHARAGPUR CERTIFICATION COURSES

Now once the interface is defined this interface needs to be implemented. So, this
implementation is by virtue of declaring a class, here is an example how an interface can
be implemented. So, the basic rule is that an inter say this is the class name which
basically implements interface and here there are two things are optional extends clause
is optional and then also it can at one time interface two or more interfaces implements
two or more interfaces. So, this basic idea is that a class can inherit from the other class
that is why the extends clause will take care and at the same time it can implements one

or more interfaces so, this is the concept.

So, then now we have demonstration in our next module to discuss about how all those
things works together and as I mentioned there this class that we should have and that
class should be declared as a public there means be this should be public here for
example, declare as a default it is not allowed. So, you have to mention that this is the

public.

Now there are few cautions that needs to be taken care whenever we implement an
interface is that if an interface in if a class implements two or more interfaces which has
the same method and then that methods should be overridden by the class and it has only
one copy. Now, when we say that same method it means that the methods which are
declared as an abstract in the interface they have the same return type same method name

and same list of parameters.

If anyone is different the method should be treated as different and then different in
implementation in the class is required. So, this is the important thing that you should
consider and the methods which basically implemented in your class also that needs to
be declared as a public, because these methods should be accessible by anyone. So, no
private, no protected method as an implementation is allowed in the class
implementation. So, these are few thing that you should note while you are considering

the implementing interfaces.
(Refer Slide Time: 13:02)

- e
@ implementing interfaces: An example

Example: A class that implements, say Callback interface:

] J.up.lmnr.n Callback {
1] 1k k t 1

wblic void callback{int p) {

System, out, println("

|- NPTELONLINE ,
CERTIFICATION COURSES rPRreuse

IITKHARAGPUR

Now, here is a quick example here you can see that how an interface can be implemented
by a class, in this case the name of the class is Client and here you see this is the
Callback method which is there in the interface and we implement this method as a
public and then whatever that I. And while we implement at the assembly we have to
consider the return type and the list of parameter should match these which are there in
your interface declaration, otherwise this will treat as a completely new methods the
methods of it is own in this class itself, what I want to say here is that. In fact, we are to
overwrite the methods, which is declared as an abstract and public method in the

interface declaration ok.

(Refer Slide Time: 13:57)

- e
@ implementing interfaces: An example

+ It is both permissible and common for classes that implement interfaces to define

additional members of their own.
] Example: The following version of Client implements callback() and adds the method
nonIfaceMeth()

c;ass@implmants Callback {
[/ JmpIemént Ca back's interface
public void callback(int p) (System.out.println("
vith"+ p);

I

void nonIfaceMeth() |

System.out.println(" hat im nt in) "¢

" ' NPTELONLINE
CERTIFICATION COURSES

IIT KHARAGPUR R ENETY N

So, this is some standards procedure that needs to be follow while we are using the
implementation of an interface by a class. Now here is another example that we can say
again this is a class Client which implements the Callback, Callback is an interface here.
So, this is the method that we have declared in the interface and implemented here and at
the same time the class which implements an interface it may contains, it may contain, it

may include it is own method as well the methods that is overridden in the interface.

So, for example, here this is one method which is the own method in this class client;
that means, it just like a inheritance concept like. So, it is basically one other way you
can say that this class clients inherits the Callback where the Callback is an abstract class
we can say in that sense. So, this is the idea about how a class can implement this means
that implement means the methods should be overridden and it can includes it is own
methods if required and no variable should be declared with the same name as that is
there in the interface there. So, the method should be in fact, because it is a static and
public declared in the interface. So, we cannot redeclare or redefine the same variable

name or members in the class implementation ok.

(Refer Slide Time: 15:31)

Il
@ rariial implementations

+ Ifaclass includes an interface but does not fully implement the methods required by
that interface, then that class must be declared as abstract.

Example
abatract class Incomplete implements Callback {
int a, b:
void show({) {
System.out.println(a # " " + b);
)
}
Here, the class Incomplete does not implement callback() and must be d as
abstract. Any class that inherits Tncomplete must implement callback() or b ed
abstract itself

NPTEL ONLINE

I I".HJ\RJ\GFUR| CERTIFICATION COURSES rPRr s
|

So, this is the idea about some implementation of the interface by means of a class and
Java also allow partial implementation. Say suppose in an interface there are two
methods and you implements this interface by means of a class only one method, then
this class can be treated an abstract class; that means, no that means, that means, no
objects can be created for this class until you override all the methods which are there in
the interface. So, you have to override all the methods so, that you can create an object or

you can complete the implementation of an interface in a class.
(Refer Slide Time: 16:15)

e TR
@ Nested interfaces

When a nested interface is used
A nested interface can be outside of its enclosing scope, it
declared as public, private, or must be qualified by the name of
protected. the class or interface of which it

is @ member.

I NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES L B N

| LY

And in Java also it is possible to allow nested interface, what is the meaning of nested
interface is that an interface can be declared inside a class declaration. This means that
this interface is a very much local to this class itself; that means, no one class outside this
in class is responsible for implementing this interface. This is the concept of it is called
the nested interface, this is a very restrictive use in the program usually we avoid it, but
sometimes we want to make an interface which is a very explicit to a particular class
only then we can think for this kind of implementation otherwise you can ignore it.

Anyway this is an example how the nested if is possible.

(Refer Slide Time: 17:10)

o e
@ Nested interfaces: Example

-1ag2 A { defines a member interface
] \] T (eiid) called NestdlF and tha it i
)

declared public.
W ET 1.. By) implements the nested
iy e e interface by specifying
return x < | 7 false: true; implements A. Nested!F

itlng” o I
stRegative (=17})
ut.prin

tin("

- NPTELONLINE :
IITKHARAGPUR CERTIFICATION COURSES FP R eHI AU

Now let us look at this small program here and this is the class A declaration as usual the
standard normal class and you can see within this normal class we declare an interface
this is the interface. So, we declare as an interface as NestedIf and this has the this
method is an abstract method and then we can inside this class as you have the interface,
interface does not have any utilization until you implements it. So, here is the class B
which implements this is the NestedIf and you can see one thing that NestedIf we have
expansion A dot, there is a special location specification that A dot means it is the

interface which is declaring the class A.

If you do not do in this case it will work, but in some situations if inside A class there
more than interface then better to do it like this one. So, otherwise if some interface

already in the same name appears somewhere else then it can give a what is called the

ambiguity. So, in order to resolve this we have to explicitly mention that this interface
belongs to which class. So, that is why the specific location mention that is A dot

NestedIf means that this is a NestedIf inside the class A.

So, this way we can define it and then finally, we can implement the interface that is
there using the usual concept and then same can be used in your main class wherever you
want to use it. So, it is the basic idea about that it is just like a scope of this interface
which is a nested interface inside a class is basically the static scope and it can be

resolved seeing the program itself and is a local, local to this class itself.

(Refer Slide Time: 19:04)

- ==
@ variables in interfaces

* You can use interfaces to import shared constants into multiple classes by simply declaring an
interface that contains variables that are initialized to the desired values.

util.Random;
2 SharedConstants {

import java
inke

This program makes use of
n I

one of Java's standard
;;,| YES = r; classes: Random, which
int MAYBE = 2; provides pseudorandom
int LATER = 3; numbers,

int SOON = 4;
int NEVER m &;

-1
;i
-
" NPTELONLINE _ "ai
IIT KHARAGPUR CERTIFICATION COURSES L e N
L™

Now, let us have a very simple example about, what is the utilization of an interface?
Why we go for an interface? What is the usage of the interface? It has 2 important
applications; one is that whenever you use an interface it will it may if it includes some
members which are declared as a final, static and then a final static public they can be
used as a global variable look like and this variable can be shared. So, it is just like a

library of different variables that can be shareable from one class to another class.

So, this is a one example and another example; obviously, the great example the most
significant example that we can inherit in a multiple sense as you know Java does not
support single inheritance, but in an indirect way Java also helps a programmer to have
the multiple inheritance implementation. These are the two main usage and one usage

also it is there runtime polymorphism; that means, that will be discussed while we will

go for demonstrating the application of interface in our next module. Now let us have the
first example that how a variable can be shared across the classes if they are maintained

in an interface.

This is an example for like. So, suppose we want to we in this example here we can say
we declare an interface the name of the interface as the shared constants and these are the
different values and by default they are public static automatically there. So, they are
public static int and these are the different value variables and the values are there. So,
these are the basically we can say this as they are basically static variable sort of things;
that means, they are global look like. So, they can be used one instances in everywhere
there. So, these are the global variable look like as you can see in a more simple way. So,
whenever we declared all these value were members in an interface they can be

considered as a global variable look like.
(Refer Slide Time: 21:25)

s e
@ variables in interfaces

i e R E e HEl ![I this example, the method nextDouble()
Random rand ® new Randon () ; is used. It retuns random numbers in the
int ask() (afige
int prob = {int} (100 4 rand.nextDouble()) ; range 0.0 1o 10,
it (prob < i0)
ratuen HO;
alse if (prob < 00)
raturn (ES; In this sample program, the classes,
olse if {prob < 1%) i : 5 . :
return LATER; Question implements the SharedConstants
alse if (prob < interface where NO, YES, MAYBE, SOON,

return S00N;
else
paturn NEVER;

LATER, and NEVER are defined. Inside the
class, the code refers to these constants as if

) cach class had defined or iherited them
directly.

' NPTEL ONLINE

CERTIFICATION COURSES B bl R
i

IIT KHARAGPUR

Now, once these methods are declared we can use them in a program. So, we can just
create a program look like. So, this is the one class the name of the class is implements.
This class is questions which implements shared constant and basically it uses all these
variable names as you can see here. Now here in this class we define one ask method

which has this kind of structure.

So, if you go through the program you will be able to understand what exactly the ask

question is there, it basically takes a random number and this random number is called

prob and depending on the value of the prob it basically return NO. YES, LATER,
SOON, all these methods are all these members are which is already declared in the
interface. So, this is the idea about a simple example of course, that all these methods as

they are they will be used here as if there is a global.

Now so, this is the way that an interface can be used in this case and here is the

complete program that you can see how this program can be used.
(Refer Slide Time: 22:28)

N —
Variables in interfaces

class AskMe implements
static vold answer

. I NPTELONLINE
IIT KHARAGPUR CERTIFICATION COURSES

This is a simple example another class ask me which implements shared constant which
use the previous asked method and it has it is own body it is there and then this is the
main methods which basically utilization of all the method in the last slides the ask
method in this slides the answer method and it basically code this one. If you run this
program it will be an interesting output which will be discussed while I will go for the

demonstration in the next module ok.

So, these basically shows emphasized that if you declare an interface then all the
members those are there is basically will be used as a shared variable across the different

classes.

(Refer Slide Time: 23:13)

o e
@ nterfaces can be extended

* An interface can inherit another using the keyword extends. The syntax is the same as for
] inheriting classes.

interface A { When a class implements an interface that

void methl(); inherits another interface, it must provide

void meth2(); . . :

) implementations for all methods required by the
i p h1() and meth2() witerface inheritance chain.

interface B extends A {
void methd();

}

! NPTEL ONLINE
CERTIFICATION COURSES Pt quss

IITKHARAGPUR

And interface can be extended we have already discussed about these that. So, an
interface truly works like a class as the class can extend another class so, an interface
also can extend another class. So, suppose here the interface A and interface B using the
same extends. So, we can extend the class; that means, in this interface all the method
that is there or all the members which are there in the interface will be also inherited in
this one. So, the basic concept is same as the class inheritance also applicable to the

inheritance.

So, again I want to repeat it that an interface in mostly can be treated as a class look like;
that means, whatever the procedure that we can follow for class it can be only the
exception is that for a class an object can be created; however, for an inter interface no

object can be created that is all.

(Refer Slide Time: 24:11)

o
@ nterfaces can be extended

clags MyClazs implements B {

public void methlf) {
System.out.println{” Ing i 1
|
public void meth2{) { e R, b
Systen.out.peintln(*Ing 0 As an prcr:mu!ll. if
) you Iry removing
JUBLLE woid mathac) | : : the implementation
Syatem.out.println o = z
\ for methl{) m
) MyClass, it will
clas) cause a compile-
ic void main(String arg]) g
ob = pew MyClass(); lume error.

hi{):

E NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES L RN

So, this is the one idea where the interface can be extended and here is a complete idea is
that on the interface extended the inherited interface can be implemented by means of a
class. So, this is the one example that basically explains how the inherited interface can
be implements. So, both the superclass interface super interface as well as the derived
interface can be used for implementation by another class. And then the multiple

inheritance is the significant what is called the use of the inheritance concept here.

(Refer Slide Time: 24:46)

o —
@ Multiple inheritance Issues

* Java does not support the multiple inheritance of classes. There is a key difference between a class and
an inerface: a class can maintain state information (¢specially through the use of instance variables),
but an interface cannot.

* For example, assume that two interfaces called Alpha and Beta are implemented by a class called
MyClass. What happens if both Alpha and Beta declare a method called reset() for which
both declare a default implementation? Is the version by Alpha or the version by Beta used by MyClass?
Or, consider a situation in which Beta extends Alpha. Which version of the default method is used? Or,
what if MyClass provides its own implementation of the method?

* To handle these and other similar types of situations, Java defines a set of rules that regalmss such
conflicts.

NPTEL ONLINE

ITKHARAGPUR CERTIFICATION COURSES

So, here is a example that multiple inheritance means one interface can extends two or
more interface, but it is not exactly the extent rather it is basically the implements
actually. So, if we can plan a class which implements two or more interface then we can
say that this class in fact, multiply inherits two interfaces. So, the concept is there and the

concept is there in the class itself the multiple inheritance can be realized.
(Refer Slide Time: 25:15)

o e
@ Multiple inheritance Issues

« First, in all cases, a class implementation takes priority over an interface default implementation.
* Thus, ifMyClass provides an override of the reset () method, MyClass’ version is used.

+ This is the case even if MyClass implements, say both Alpha and Beta. In this case, both
defaults are overridden by MyClass' implementation.

« Second, in cases in which a class implements two interfaces that both have the same default method,
but the class does not override that method, then an error will occurs. Continuing with the example, if
MyClass implements both Alpha and Beta, but does not override reset (), then an error will

Qccur,
I NPTELONLINE 45‘\ /')
CERTIFICATION COURSES L B BN
[

Now here few things have to be more few things have to be carefully noted first of all the

IIT KHARAGPUR

class suppose implements 2 interface i 1 andi 2 and there is a method say m which is
declared in both the interfaces. Then in the implemented class which methods needs to
be implemented in this regard I want to say this way that if the 2 methods are same the 2
methods are same in the interface in the sense that they have the same return type and
then same list of arguments, having the same type then it basically absolute no problem

you have to override only once.

Otherwise, all the methods which are there we have to override in the implementation
class implementation of the interface. So, this way it basically multiple implements all

the interfaces they are by multiple inheritance it is like this one.

(Refer Slide Time: 26:23)

o e
@ Multiple inheritance issues

* In cases, one interface inherits another, with both defining a common default
method, the inheriting interface’s version of the method takes precedence.
Therefore, continuing the example, if Beta extends Alpha, then Beta's
version of reset () will be used.

+ Itis possible to explicitly refer to a default implementation in an inherited
interface by using a new form of super. Its general form is shown here:

' NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES L e

There is another also example where we can have the class extends one class and
implements another this is also one example of multiple inheritance in there. So, by class
extends for example, class B extends class A and implements interface i then it basically
is a multiple inheritance concept it is there; that means, it extents class B A means that B
will inherit all the methods and members those are accessible to the class A class B it is
there in addition to the interface methods and the interface variable also accessible to the

class there.

Now, again another important rule that if the two interface have the same variable
declaration then it will give a compilation error that you have to somehow take care
check that the two interface does not declare the same members variables in duplicate in
the two interfaces or more than interfaces which are basically in used in multiple
inheritance and multiple inheritance is not limited to only two interfaces any number of
interfaces can be considered. So, a class can implements two three or many interfaces at
the same time, but extends whenever it come into the picture it can extends only one

class that is the important what is called the things that you should note ok.

(Refer Slide Time: 27:47)

o e
@ Muttiple Inheritance Issues

+ Itis possible to explicitly refer to a default implementation in an inherited interface by using
a new form of super. Its general form is shown here:

Interfacelame.super.methodName()

* For example, if Beta wants to refer to Alpha’s default for reset (), it can use this
statement:

Alpha.super.reset() ;

_ NPTEL ONLINE
ITKHARAGPUR CERTIFICATION COURSES R R

So, this is a concept that and if you want to specify explicitly some interface and then
again the super keyword can be used. So, here is an example for example, super method
name is basically in the InterfaceName we can discuss about if it inherits from others
name to resolve the ambiguity if any. So, the super concept it is basically same way it is
basically namespace collision resolution as well as the method resolution. So, this is the

same concept also extendable to the interface here.

(Refer Slide Time: 28:19)

5 Questions to think...

* How a robust program can be developed in
Java?

* How Java manages different types of errors in
programs so that it can avoid abnormal

termination of programs?
£

NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

Now, we have learned about the interface and then more on the interface will be
discussed while we will have a quick demo on the interface and we advise you to have

the good lessons in the interface demonstration.

Now, our next topic that we are going to cover is very important topic that this topic is
basically to address the questions that I have mentioned here. So, there definitely is a big
question that how a Java programmer a software programmer can develop the program
which is very much robust; that means, fault free tolerant program. And then there are
many errors and particularly it is the concern whenever the program size is increased
from lows low size low volume to high volume because as the code size will increase the
number of errors possibility will increase so, how to deal with this situation. So, all these
things will be discussed in our next discussion that discussion is called multiple is called

exception handling concept.

Thank you; thank you very much.

