
Programming in JAVA
Prof. Debasis Samanta

Department of Computer Science Engineering
Indian Institute of Technology, Kharagpur

Lecture - 20
Interfaces – I

So, in the last module including the demonstration; we have learned about packages in

Java. Now there are two things in Java which makes the Java programming a unique is

package and interface. And this is why the Java programming is basically more popular

compare to the other programming languages in particular to build very large and

complex software.

So, today we will discuss about the concept of interface in today and in the next module.

Actually the things needs to I mean lectures hours to discuss complete the discussion so

we will take the two modules to complete it. Anyway, today we have some basic concept

of interface and then other some other concepts also will be discussed in the next module

anyway.

So, let us start about interface, but before going to take the lesson about the interface we

want to start with the abstract class. The abstract class concept we have already discussed

while we are discussing about inheritance.

(Refer Slide Time: 01:31)

So, a class can be declared as an abstract class as we know by defining the keyword

abstract. Now, let us consider a very simple example this example as say; we declare a

class say geometry as an abstract class. And then we want to have some classes inherited

from this abstract class namely circle, rectangle and ellipse.

Here, geometry basically say that a set of objects geometrical objects rather and then

there are different special objects belong to this all geometrical objects namely circle,

rectangle and ellipse. Now, let us have a quick look about how such an implementation

can be done in Java using the concept of abstract class.

(Refer Slide Time: 02:21)

So, here we can see we built a built an abstract class namely class geometry here. And

then we put this class in a package. The name of the package as we see MyShape is the

package. And under this package so there are so this class abstract class is defined by

these three members. One is PI declared as a static and final and then area and

circumference are the two abstract methods that we have discussed.

As you know an abstract class can contains both abstract methods as well as known

abstract method. In this example we include only two abstract methods here. So, they are

declared as a public abstract double area, public abstract double circumference. So, this

is the declaration of an abstract class. Now, what is our objective is that our objective is

to create the other classes which can be inherited from this abstract class.

So, here is the one code what we can see here the circle class which basically inherited

from the super class geometry. It has the constructors of its own. Here is the dipole

constructors and there is another constructers is only one arguments. So, the two

constructors will define the method area here and then the method circumference. And

some method which is the unique in this class itself. As we see these are the two methods

are the implementation of the method abstract method which is there.

So, whenever some abstract methods are there in abstract class it is a responsibility of the

programmer to implement it fully. If you do not implement then you will not be able to

create any object of this class that we have created just now. Anyways so this completes

the creation of the class circle which is an inheritance from the class abstract class.

(Refer Slide Time: 04:51)

Now, after this class is over and the next is that how the ellipse class can be again

inherited from this abstract class. So, we are going to inherit the three classes from the

abstract class namely circle. And now we are going to discuss about we are going to

discuss about this is the circle class. And next is it is an inheritance from the circle

another is the called the rectangle class. So, this class has this kind of form we see this is

the one member that is declared as a protect it; that means, this l and w will be accessible

to its inherited class.

And these are the method the constructor in this case. And this is another constructors

with the two arguments to be pass it is a dipole constructor and this is the special

constructor. So, this is the class declaration and as we see here this is basically

inheritance from the geometry class. So, it is an inheritance of the geometry as a

rectangle class.

Now, next class that we are going to discuss about this class has come other methods

which is not put into here. So, this is a other methods as we see area which is again

declared as an abstract in inheritance. So, it is defined here for this class, and this is a

circumference which is for this class it is the redefinition and these are the two methods

of its own that is a special to this class. So, this completes the declaration of the class

rectangle which is an inheritance of the class geometry.

(Refer Slide Time: 06:24)

Now, our next class is an example this is a ellipse. So, we again derive the ellipse class

inheriting from the geometry it has the methods like this. And it is another constructor

there are few more things are also here. So, this is basically completes the declaration of

this class as we see here area is redefine for this class circumference and the two

methods that is of its own.

Anyway, so we have a full what is called the declarations of three classes namely circle

rectangle and ellipse which are a derived classes from the super class geometry here. And

the geometry class in this case is an abstract class. Now, after this definition of this three

classes are there then we are now in a position to create the object of these classes. Now

let us see how we can create the object of these classes.

(Refer Slide Time: 07:25)

So, here is the one application program that is basically the contain the main class; so

that we can create the objects of the classes that we have define Now, we give the name

of this class is GeoDemo and we can see all this classes that we have declared we have

store them in the package form and the name of the package is MyShape. So, we have to

import all the classes that we have stored in the package MyShape and this is the import

statement.

Now, so this is the main program as we see we create a geo objects of the abstract class

here. So, this is basically is a basically container we can say geoObject is a container

which holds the different objects of type geometry like this. Now then we create three

different objects of three different classes like circle, rectangle, ellipse. And we store all

this geoObject into this container like this one. So, it is basically an array of geoObject

we can say so this is stored.

Now, let us see how we can process. So, suppose whatever the objects that we have

created in this case we have created three objects with these are the different parameter

pass to the objects. And we want to create the total area consumed by all three objects

that is there. So, we can have a very simple for loop; so we can create the total area these

are the total area is the some of all the areas of the objects this is there and then it will

print.

Now, here we can think is looks very simple. What we have done? We have create an

abstract class for this abstractor we have derived three sub classes namely circle ellipse

and then and then we store this things in an application and then used them process them.

Now here, few things very important to note in this here: now geoObjects dot area so for

if you do not thing about this code. Now only this code now geoObjects i dot area. So,

whenever the loop will role it will basically bind itself that which area corresponding to

which object.

Now, whenever i equals to 0 these area will bind to the circle objects whenever i equals

to 1 these area will bind into the rectangular object, whenever i equals to 2 this area will

bind to the ellipse object. So, geoObjects i and it is just automatically binding with a

corresponding object this is an example is called dynamic binding or it is also called run

time polymorphism.

Because this geometric object polymorphic ally work for any area irrespective of the

type of the object it is. Now, this is one very good example of usage of the abstract class

so for we have used earlier. Now like this type of concept we are now going to discussed

about other things. So fine, this we can see from the geometry object we have derive

three classes, but this derive by means of single inheritance.

(Refer Slide Time: 10:43)

But in some situations you know we have to have the concept of multiple inheritance.

Now how this concept it is there now regarding abstract class and everything as we have

discuss this thing that those things are already discus. So, I do not want to repeat it fine.

So, abstract method is automatically abstract itself, and then if a class may be declared as

an abstract even if it has no abstract method also this prevents it from being instantiated.

Now here instantiation regarding this instantiation we will discuss a details and then we

should have a good demo on it.

So, that you will be able to understand it and a sub class of an abstract class can be

instantiated if it overrides each of the abstract methods of its super class. Otherwise the

subclass object cannot be created that is what I want to say here. And here is basically if

a subclass of an abstract class does not implement all the abstract method which is

declared then; the abstract class then the sub class itself created as an abstract because we

cannot create any object of that abstracts. So, these are the few properties of the abstract

class it has hold.

(Refer Slide Time: 11:52)

Anyway, now let us see about the concept that is the multiple inheritance is our objective

then how the multiple inheritance is possible. They consider multiple inheritance is like

this say suppose circle object should have characteristics from the geometry object that

we have discussed. Now in addition to this it will create some other characteristics from

the some other classes which are defined there in their draw shape.

So, suppose you want to create the circle with different what is called the colors, with

different shading, with different zooms like this one. All this things suppose it is defined

in this draw shape method. This means we want to defined one circle which take the

advantage of both the geometry classes that we have already learned and then also in

addition to draw circle.

So, this is the concept that if we able to do; that means, if you able to inherit the

characteristics from two or more classes then it is not a single inheritance it is called the

multiple inheritance. However, Java does not support any multiple inheritance then how

we can achieve this things? So, there is an alternative way of doing these things; this is

possible using an interface. Now, so here is the task is at what exactly an interface it is.

So, we are going to discuss about the interface. In fact, I have introduced I have started

this discussion we giving an introduction I mean discussion on abstract class this,

because you will learn about that interface an abstract class is in many way very similar

is very difficult to find a difference between the two. But the difference is that abstract

class allows only single inheritance whereas, the interface which is very similar to

abstract class, but it supports inheritance multiple inheritance. So, this is the key

difference between the abstract class and then interface in Java.

(Refer Slide Time: 13:47)

Now, let us have a full concept of the inheritance multiple inheritance rather and the

interface. As I told you so an interface is basically very similar to a class it is very similar

to an abstract class more specifically. This means that like classes an interface can

contains members and methods. However, the difference between the class and interface

is that in case of interface all members are final and all methods are abstract.

There should not be any members which is non final and any method which is non

abstract. Now, this is the difference between the class and then interface whereas, if you

see the class abstract class and then interface as you have already learn that the

membership will be final. And then inter abstract even can container abstract method as

well known abstract method.

This is also on difference between the abstract class and interface concept and another

thing is that for both abstract class and interface no object can be instantiated. So, this is

a similar this thing we in that sense there are two things are similar. So, difference is like

this and then similarity is also like this ok. So, this is the concept of interface in a very

broad sense.

(Refer Slide Time: 15:06)

Now, let us have the more detail concept about it. As you have already discuss what

exactly an abstract class is or rather what exactly an interface is. Now, as we see so what

is the usage of abstract class or interface, if you cannot instantiate an object, if you not

build an object of that class what is the use of it. Actually all abstract class or an interface

in Java basically gives a template for a class.

A framework for a class: so it basically gives a profile or a view that; how a class that

you should have if you want to create your own program; if you follow the concept

according to the abstract class and interface. So, abstract class and interface gives a

concept rather it gives a protocol of behavior that should be implemented by your Java

programs that you want to develop it. So, it gives basically rule of thumb about creating

your own class taking the rule from the abstract class or interface this is the concept.

And as I have already told you an interface defines a set of methods, but does not

implement them, because they are declared as an abstract it is just like a abstract class

also. And a class should implements that methods which is declared their as an abstract

method in interface. That means, interface is a structure, and then if you want to create a

class with a support of interface then it is a responsibility of that class to implement.

That means, clearly defined all the method that if there in that sense. And as you have

already told you all methods those are there in an interface they should be declared as a

public and abstract. And by default if you do not declare any access specification then it

will be considered as a public and abstract. And otherwise so it is a thing and then static

methods cannot be declared in an interface. So, that is a one important restriction so far

the thing is a concern there in.

But however, in the abstract class also you can declare a static method as well as.

Anyway so interface it is like this all methods will be abstract more clearly all interface

will be public and abstract and no static method should be declared there. However,

members are concern they should be declare public final and also static. So, these are the

thing that is equal so for the interface is concerns are there.

(Refer Slide Time: 17:44)

Now, how an interface can be created. So, in order to create an interface Java provides

say keyword it is called the interface keyword. So, it is this is just similar to like abstract

class to create an abstract class we use the keyword abstract. So, it is like this, but there

are syntactically few more things are different that we should discuss about it. Now here

is an example; so you can see we have declared an interface the name of the interface is

callMe.

So, interface keyword followed by the name of the interface and as it is the similar to the

declaration of class with in the curly brackets. And then inside this as we see here it

contains one method void call int p and then semicolon, As we see after the method

declaration the immediately there is a semicolon this means that this method does not

have any definition anybody any code.

So, this means that this is an abstract method and again I told you that as it is default that

this method is a public and abstract. So, we do not have to specify any keywords

explicitly we mean you do not do it. So, compliable understand that this call method is a

public and abstract. That means any class can implement this interface.

(Refer Slide Time: 19:13)

So, this is the syntax for declaring an interface. Now regarding interface if you have an

interface using that interface you can build any class from that interface; that means.

Here for example, interface is a class here we see interface is you are define one

interface. Then this class 1 and then class 2 are the 2 implementation of this interface in

the two different ways two different codes two different programs.

Now, so, this is a one idea about it likewise here if we see if we have two or more

interfaces like say interface 1, interface 2, interface 3. Like then a class you can plan or

you can create you can build. So, that it can implements all this interface. Now we can

see this is just like inheritance. What means, this class inherit from this all the methods

all the variables that is declared here it will be inherited here it will be inherited here or

like this one.

So, it is just like a multiple inheritance look like that is the multiple inheritance concept

in Java it is coming on the way. That if it is interface you can do it, but if it is a abstract

class you cannot do that all this things should not be abstract class or any class rather ok.

So, this is the idea about that we will discuss more about the multiple inheritances in

Java using the interface in due time.

(Refer Slide Time: 20:44)

Now, let us have an example quickly; so that we can understand about the concept of

interface more clearly. As we see here, so this is a structure as we can see and led this

structure we interface. Now in this structure what we have defined we have defined two

methods draw and resize. They basically the method declaration, but not the body this

means that all this methods are basically structure a framework a basically template a

protocol so this is the interface suppose.

And then we can create our own class namely circle here which basically implement

draw an resize method which is defined there. Now, it also can implement for the objects

line. So, different methods draw and this one; that means, here the circle and line or

rectangle. If we see the draw method here in circle or line or draw they are the different

way of implementation. So, that is why the different implantation we can say.

So, this way what we can understand is that so, three different implementations, but it

follow the template or protocol that is given their interface. So, this way the interface is

coming into the way that we can use it. Now, further if it is a class now this class can be

used normal class like. So, from this class we can inherit some other class also with some

other method overwriting whatever it is there.

So, all this things are quiet possible makes it more flexible, more versatile, and write any

way whatever you want actually. Anyway, so this is the idea about that if you have an

interface it gives you a I mean structure. So, that you can follow this structure to create

the similar type of objects similar what is called type of objects rather and then we can

use this in our program. Now, so this is the concept that is there and we have a good

example so that we can understand about it.

(Refer Slide Time: 23:00)

Now, before going to have the full code about the interface and everything; let us have

briefly again summarize regarding the interface and it characteristics. As we have discuss

interface must be declared with the keyword interface. All interface methods are

implicitly public and abstract that I have already told you because you know need to

mention explicitly.

All variables those are there in an interface should be public, static, and final this is

obvious; that this means that the variables those are there in an interface they should be

treated as a constant. No class any method in other class which basically implements an

interface cannot change their values. And interface methods must not be static no static

method in an interface is allowed.

And because interface methods are abstract they cannot be marked final. So, you cannot

do it because this needs to be implemented or defined in any other class which

implements it. So, they should not be final then we all methods are abstract, but not final.

And you can find note that these are these are the difference between your abstract class

and this interface class again.

Now, enter in addition to this and interface class can extend one or more other interfaces

we have already discussed about. An interface cannot implement another interface or

class that is the not possible. So, interface only a class can implement it, but the reverse

is not possible actually. And interface types can be used polymorphically.

So, this is the concept is that an interface; if it is there is a type then this type can run

timely bind is if in the example of extra class we have shown that circle ellipse and then

rectangular how dynamically or run time or polymorphically bind with the method called

area like this one; so it is like this ok.

(Refer Slide Time: 25:03)

So, now here is a quick syntactical structure about how the interface should be declared

in a program. Now so this is the syntax that we can see the interface should be declare

with the interface keyword the name of the interface and these are the option. An

interface can extends any other interface.

So, these are the name one and everything, but this is the interface not the class actually.

Anyway and these are the variable declaration as we have declared all this variable

should be declare static final and abstract as well as, and then these are the a public static

and final. And these are the method abstract and abstract method, public abstract method

so these are the methods.

Now, so this is basically an example how a variable or a member in an interface look like

and these value once it is assign it will remain this you cannot change it, because it is a

static. And then this is a return type that is basically only you can see the semicolon no

body it is here. After this declaration that mean this method is declared as an abstract

method and as it is a public also keyword is by default it is there ok.

So, this is the idea about how we can create our interface in a program the syntax that we

have discuss it and it is an example.

(Refer Slide Time: 26:28)

So, an item is an interface declaration; it has the variable this is the variable which is

declared as static final. And this is the one another variables static final and this is the

one method that we have discussed here. So this is a one example that we can understand

about how it can be used to create an interface. Now this is another example so, we can

declare here a temperature an interface this is a similar kind of things so it is basically

template. And using this interface we can create class.

Here we can see in this example interface this is the name of the interface is curves and

then extends circle and ellipse. That means, here the curve is an interface which basically

extends circle and ellipse types. That mean this curves will include all the features which

are there in both circle and interface. And in addition to this it has method all this things

like this.

(Refer Slide Time: 27:46)

Now, basic syntax, that after one interface is created how it can be utilized in our

program. So, it is the concept here then how interface can be used. So, we can declare a

class name which basically extends this one and implements the interface. So, there is

basically a class can extends some other class as well as it implements. So, it is option.

So, this way a class a one interface if it is defined then it can be used subsequently in the

program.

(Refer Slide Time: 28:19)

Now, here is a quick example this is a very nice example to understand the concept of the

interface it is in the same line, as the abstract class example that we have discussed

earlier. Now here we can see this is an interface structure as we know it has these are the

members static final abstract. And these are the method abstract and public and we want

to create three type of object like circle ellipse and rectangle using this concept interface.

Now, let us have the quick look of this how it is possible a good program is there.

(Refer Slide Time: 28:51)

Now, here we can give the name of that interface as a GeoAnalyzer. This has the

methods as we have discussed and circle here you can see this circle implements

GeoAnalyzer. And this implantation means it will implement this method it implement

this method. So, this is the constructor is automatically for this class we have to do it.

And this is a implementation of this area and this is the implementation of this the area.

So, this completes the usage of interface in order to implement the circle.

Similarly likewise we can create another class for the geometrical object like ellipse. So,

this is the similar way of creating the class object ellipse and this is the implementation

of rectangle. Now we can understand that using the interface and the implements it is not

extends you can see in case of abstract class we may use extends; that means, derived

class. But here actually implementation of the interface which is an totally an abstract

concept and then we can have this kind of objects created.

(Refer Slide Time: 29:26)

Now, once this kind of object is created we can create the object see our own method. It

is very similar to the abstract class concept in the same line we can see let this is the one

class that we have declared as a main class name of the main class is geometry. It

obviously, input all the classes that we have created earlier so if they are put in a

package.

Now, after these things we create one method which is a special method in this class void

display. It basically x and y value will display it is like this. Now let us see the main

method that we have declared here. So, these main method create the three objects circle

ellipse they store in this objects form. And then we create one what is called it is not an

instantiation we just create we declare we define an object of type GeoAnalyzer that fine.

That means, it is a interface type GeoAnalyzer is an interface in our example. So, here

we see the GeoItem and interface item basically we have created.

(Refer Slide Time: 28:51)

Now, here once a Circle c is created we can assign this one. That means, GeoItem now

point to c; that means, circle and then the display method which is decaled here can be

called you see whatever be the object the display method look like the same thing right.

If you do not look about this one this one and this one display a method is basically

irrespective of the circle rectangle ellipse it basically over the same.

So, this is again the concept it is called the dynamically binding or it is a

polymorphically run time polymorphically binding it is. Now, what we can say is that

whatever be the object it is there area and perimeter can be utilized in this program. So,

this is the idea about we have learned about that how the interface concept can be used to

build class. And therefore, subsequently build the Java program.

(Refer Slide Time: 31:51)

The same way the idea can be extended for the other, this is another example that you

can consider.

(Refer Slide Time: 32:01)

Now, inheritance with interface as I told you an interface also can be used to extend other

interface. So, this is a one example that inheritance it is the same concept as class. That

means, interface can be created as a class so, for the inheritance is concern interface. As

we see here as we see here the interface is interface chemistry extend this one. That mean

this is the interface used to extend the constant where constant is an interface.

So, this is an interface and here we can see this interface extends interface creates

another interface chemistry inheriting the constant interface. Here, we can see interface

create another interface law of physics inheriting the interfaces those are constant and

physic. So, it is same concept it is just if you just like it is a class inherits others like this

one. So, it is the concept that inheritance also it is possible.

Now, so this is the idea about a brief idea about the inheritance. And we will discussed

more about inheritance in our next module.

Thank you.

