
Programming in Java
Prof. Debasis Samanta

Department of Computer Science Engineering
Indian Institute of Technology, Kharagpur

Lecture – 14
Demonstration – VI

Let us have a quick demonstrations on the topics that we have learned in the last module.

Our last module was on was based on the inheritance in Java. So, today we are going to

have a quick demo on the topic that we have learned in the last class.

(Refer Slide Time: 00:37)

So, to in today’s demo we are going to cover basic concept of inheritance, namely the

simple inheritance and then we will discussed about multi level inheritance, we have

discussed about the super keyword which used to avoid the names space collision, the

super keyword use of the super keyword to invoke the superclass constructor and then

using the super keyword we can reference to some variable of the superclass. And then

overriding is an important concepts in any inheritance, so method overriding will be

discussed.

There are two more keywords namely; abstract and then, final keyword that is come on

the way of inheritance. So, we will discuss this one. So, these are the topic that we are

going to discuss in this demonstration lecture. Now let us have a first demonstration on

simple inheritance. So, how is a class can be needed from another class we can see it let

us have the demo.

(Refer Slide Time: 01:45)

Now, let us watch this program here in this program we see a class namely class A is

declared. This is the superclass in this case, this class has 2 members i and j and it has 2

one method called the show i j printing the values of i j i and j in this class.

Now, in the next class the class B which is basically inherits the class A. So, class B

extends A and we can see that in class B we declare one variable called the k of type

integer and then class B has its own methods. So, k printing the variable k in this class

and also it has another method sum, it will print the value of i j, which are inherited from

the superclass and the value of k, which is in its own variable.

(Refer Slide Time: 02:47)

So, these are this is the inherited class B and as you know class B therefore, by virtue of

inheritance have the access of both ij and the method. So, ij which are declared in class a

as a default access specifier as there in the same file they are readily accessible by virtue

of inheritance as well as default access specification. Now let us have that main class the

main class here we name as demonstration underscore 6 1 and in this class we create 2

objects of type class A and class B namely super Ob and sub Ob.

So, 2 objects of 2 different classes are created and in the next statement we initialize the

values of i and j in the super class objects and then also print, I call the method of so ij or

the superclass object. And in the next statement we see we initialize, the subclass object

ij and k as 7 8 9 and then we display the values of show i j, show i j as it is accessible to

sub Ob ib by means of the inheritance and then also we call the show k method of thus

sub class objects sub Ob and then we print it.

Now, let us have a quick demo. So, you can see that this is all legitimate access, we can

use this thing and it will give that results that we have initialized and finally, it will also

display the value accordingly. So, we run this program as using the Java C and then

execution, so fine. So, it will work because there is no error in the program and it will

print accordingly. So, this is the value that this class will print for us ok. So, this is the

first example showing how the simple inheritance in Java can be done.

Now, our next demonstration is based on the initialization of the subclass object by the

constructors that is there in the superclass.

(Refer Slide Time: 05:01)

So, this demonstration will tell will go show us how we can initialize a subclass object

using the constructor which is defined there in the superclass. Now let us have the

program where we can see the class Box is a superclass class having 3 data width height

and depth they are declared as double. And, the box is the constructor it is a superclass

constructor default constructor and in addition to this default constructor there is one

more constructors is initializing the different values in the class objects and also it has

one method volume it is a simple multiplication of the values of the objects.

(Refer Slide Time: 05:49)

So, this is a class superclass. Now we derive one class give the name as box weight it is

an inheritance of the super class. Box here in this case and in addition to w h and d which

are there in box class we define another data weight of type w see this is the data of its

own and then we declare a constructor in this class box weight which we pass the value

there and then initialization if this one.

So, we can create an object of superclass as well as subclass here in the means class we

can see. The main class is demonstration underscore 62 a. So, we create an object my

box 1 of class box and then also we create another object my box 2 of the type box

weight which is the subclass in this case passing the values 2 3 4 and 0.076 as an

argument we initialize the object. And then finally, we print the volume for the object.

So, there we can see we have created a subclass object, we have created a superclass

object; although no problem. For the superclass object there are 2 constructor. So, in this

example, the default constructor will be called whereas, for the initialization of the

subclass object the constructor only constructor here that will be called. So, this program

will be executed and let us see the execution of this program. So, this program (Refer

Time: 07:22) you successful compilation and execution. It will print the volume of the

both objects my box 1 and my box 2 which we have created yeah.

So, we can see that 2 objects are successfully created one object is that a subclass object

another is the superclass object. Now, we have shown in this the example that how the

subclass object can be initialized. Now we are going to have an another illustration

where a subclass object can be initialized with the help of superclass constructor. So, this

is the one program in this direction it is simple as usual earlier the superclass remains

same wherever we just redefine the sub super class subclass object in the following lets

go down yeah.

(Refer Slide Time: 08:33)

So, here you can see we just have the 2 constructor, one is the default constructor in the

subclass object subclass the box weight the default and another is the width some values.

Now in case of default constructor we see we call super within this one, this basically

called the superclass constructor in the superclass namely box ok. So, it will call this one,

so it will initialize with the 0 0 0 values to the members.

(Refer Slide Time: 09:03)

Now, again the super w h here basically it is the superclass constructor, which has the 3

argument that is required and then we call this superclass constructor to initialize this

using the box weight constructor here.

Now, let us have the same demo here it is basically same thing we create 2 objects, my

box on for the superclass object my box 2 for the inherited class objects and then it is

basically same program as earlier, only the thing that we have initialized with the help of

super class constructor. Now, so in this demo, the superclass constructor is basically,

super with certain argument. The argument which will fit with the superclass constructor

will be used here in the subclass constructor.

So, let us have another demo. It basically super use of the super keyword that basically

how we can refer a subclass object with the help of superclass variable. Now let us have

the demo 6.3. Now in this case, we will see how the superclass variable can be referent

to the subclass variable like this one. We can better explain this now this is the sub class

definition class box, it is the same as earlier it has 2 constructor, the if the class definition

is same already that we have discussed here. Now, let us come to the superclass object. It

is also same, it basically has the weights and then the only constructor here in this case.

(Refer Slide Time: 10:43)

Now, let us see the main class method here. This needs to be checked very carefully.

Here we define one object of subclass box weight, the namely weight box is the object

passing the parameter for it. Now in addition to this also we declare here another object

plain box of class superclass box here and volume is the volume to hold the volume of

this one.

Now, if we call the volume method for the weight box. So, it will call the volume method

in which is defined in the subclass and the accordingly the volume will be calculated

now. So, it will be printed now so, that is all. Now let us come to the next one. Now here

we can see plain box is equals weight box. So, it is possible, here basically we are

referencing a subclass with the help of superclass. Plain box is a superclass object and

weigh box is a subclass object. This kind of assignment is quite legitimate; that means,

we can reference a subclass object name with the help of superclass object name and

next statement is also quite valid volume will be obtained for the plain box there.

Now, again you can see which method will be called here. It is basically volume of the

weight box method will be called here. Now let us run this program 6.3 ok. So, we can

see the volume that we can print here is the volume of the subclass object, but it is

reference to the superclass object ok. So, this is the 1 demo. Let us have another demo,

this demo is basically planned to explain using the usefulness of super to avoid the name

namespace collision. So, basically we can write overcome the name hiding using the

super construct. Let us 6.5 the demo yes, so this is the one simple program that we can

check it.

(Refer Slide Time: 13:09)

Now, here let us look at the program class A is a class declared here having integer as a

variable in it and class B is a inherited class from A and also see i a integer is declare of

its own. Now here whenever by means of inheritance, the value the variable i both that is

there in the superclass is also accessible to the subclass, then it become a problem it is

called the collision, collision means both i is there ok.

Now, of course, according the inheritance it basically overwrite that mean the scope

according to the see this I, which is declared in class b is basically i of this subclass

objects not that one. So, these i, which is declared in the class B in fact, heights the i

which is already there in A; however, we can refer both the variable and this reference is

possible using the super keyword.

Now let us see the constructor which we have defined for the subclass object B is like

passing A and B as the arguments. Now if I mention super dot i this refer to the variable

I, which is there in the superclass object and similarly I, if we do not mention anything it

basically refer to the variable i in the same class itself that is here in the B. So, this way

we can refer to some superclass variable as well as the subclass variable this way.

So, super can be used to resolve the collision that is that happens in this case. So, rest of

the program is very simple. So, method we will print all the values those are there in

subclass as well as superclass to print statement is used for that and these are main

method, a sub object subclass object is created and then we call the so method, it will

print the 2 values there ok.

So, for example, 1 and 2 will be painted here, 1 will go to the eye, the superclass values

and then 2 will go to the value to the subclass ok. Let us run this program quickly, so that

we can see exactly whether it is running or not and then we can have the understanding

then that superclass can be used to resolve the name collision. So we can see that ok, so

it is it basically is successful so far execution is concerned. So, it works. Now, our next

demonstration basically to see how the coat shearing is possible, it is also a very good

example of dynamic binding concept that is there.

(Refer Slide Time: 16:07)

Actually it is a runtime polymorphism concept, it is they are during runtime it will

resolve which method is basically called here. Now here we can see first we declare one

class the name of the class is cat and it has one method speak and then it basically print

this meaon statement here.

Now, another class which is basically inherited from that class cat is a subclass pet cat of

superclass cat. It has also the method speak and this method has this statement meow.

Now here you can see the 2 methods are defined, but it is a method overriding. Thus the

speak method in pet care overridden then, then the method that is there in the subclass

method cat. Now we declare another one class also extension of cat it is basically multi

level multi multiple it is we can say that 2 inheritances, 2 multiple single intents we can

say here because we another inherit another class magic cat from the class cat and we

can define one variable is a Boolean type no one.

Now, void speak if no one, if it is true then it will call the super speak. Super speak mean

in this case, it will call the cat class speak that is there in declare method meaning in

discuss it will spin meow and if it is false then it will call this simple message. Now let

us see how dynamically we can bind to this.

(Refer Slide Time: 17:47)

Let us have this program, this is little bit tricky. You can see how these statements are

here. So, demonstration underscore 66 is basically giving the idea about runtime

polymorphism in this case, but we will resolve it using the super concept here. So, here

we create an object of a subclass pet cat c 1.

So, that is very simple. Also you create another object c 2, the magiccat and so C2 no one

we mention true; that means, if it is no one, it will spin the superclass method for this c 2.

Now, again c 2 speak. So, it will call the method here. Now c 1 speak if we call that it

will call another subclass objects that is the B met one. Now we can mets c 2 noOne as

false. So, it is now false and if we call again C 2 speak, then it will call the another

method. So, it accordingly it will print meow meow and then hello cat. Now let us see

the run the program we will see exactly how it will work yeah ok.

Now, you can see this basically print according to the different statement depending on

the concept it is there. So, this is one example here basically we can see that how that 2

or more classes can be inherited from one superclass. This also example signify this fact.

Now let us have another instance of multi level inheritance.

(Refer Slide Time: 19:33)

Multi level inheritance means, if we can derive from one class subclass sub from

subclass we can derive another sub class. So, like this one the example of multi level

inheritance, now here let us see the class box which is already the same as we have

discussed in earlier demonstration and also we used the box weight another subclass

derived from the class box. So, it is more or less same as we have already discussed, now

here the simple inheritance 2 level.

(Refer Slide Time: 20:01)

Now, in the next level we inherit another, so we define another class shipment it is

basically sub subclass of the class box weight; that means, box weight is a derived class

from the class box and shipment is another derived class from the box weight. So, this is

the shipment is an example of multi level inheritance. And again for the same concept it

is also applicable here, the multi level inheritance can be initialized by calling its

superclass constructor in this case box weight constructor.

So, super wh dm basically called the constructor that is defined there box weight, it is

like this way and it is initialization. Now let us come to the creation of objects.

(Refer Slide Time: 20:47)

So, demonstration 6 7 there is a program, here we can create 2 objects shipment 1 and

shipment 2 and then we can call this method it works and then, so let us run this

program. So, that you can see the in the different for the 2 different objects, which are

derived in a multi level way can be used to create objects and then the different methods

in those objects can be accessed by a Java program ok. So, this is an example that we can

verify with the court, so that it is working correctly.

So, this is an example of multi level inheritance. Now let us discuss about the abstract

class.

(Refer Slide Time: 21:31)

A class is defined as an abstract class, all the classes that we have discussed earlier

superclass they are the they are with the access specification the defaults So, they are

default, there is no other access specifier it is used here; otherwise we can use some other

access specifier depending on its application. Now here we use one keyword called

abstract. If we specify an abstract keyword before a class then that class is called abstract

class. So, in this case, base class is declared as an abstract and also one method if a

method is specified by an specifier called abstract then the method is called abstract.

So, in this case, a class is an abstract and in this class one method is declared which is

also an abstract. Even we can also declare a method without any abstract also is called a

non abstract method, but in this case let us have the method is an abstract now abstract

class. So, what is the meaning of this abstract class? As we have already know learn

about that, if we declare a class as an abstract class this means that no object can be

created for this, but this class can be used to inherit some other class; means and abstract

class can be used for superclass, but no object can be created for this kind of class

abstract class.

Now, let us have the one example here, we can see class derived is a subclass of the

superclass base, so it is quite and if there is any abstract method, then in the subclass the

method should be declare and define properly. So, the method if you see abstract,

whenever you declared abstract, no code need to be mention there, so there is no code, so

it is a blank. Now here you see in the subclass declaration we fully declared the method

fun and this basically includes on system pin statement it will basically pin this one.

Now, let us come to the main method here demonstration 6 (Refer Time: 23:40) now 6 8,

so here we can see, so here we can see, if we uncomment the statement like base b, new

b then, let us uncomment the statement and then try to run it and we will see what is the

consequence. So, this will give an error, because the base class here is an abstract class

and we are not privileged to create any object. As we can see the state the error during

the compilation base b, new derived it is basically saying variable b is already defined in

a method mean like this one.

So, basically abstract class cannot be instantiated you can see an abstract class cannot be

instantiated because it is like this one. So, let us uncomment comment it again now have

the next one base b, new derived this is quite yeah. So, now, see we can have the

reference of base type by means of this kind of up casting is quite possible there. So,

now, we create an object of type derived class, but reference it through a base class

object this is quite possible and then we call the b dot fun as it is there. So, this fun is

basically the fun method, which is declaring the subclass method. So, this program if it is

run, then it will give the output, so this is working correctly. So, this is a concept it is

there, so far the abstract class is concerned. Now again here that whether abstract class

we have understood that no object can be created.

(Refer Slide Time: 25:11)

Now, whether abstract class, can have any constructor or not. So, our next example

showing this thing that yes an abstract class may have its own constructor.

(Refer Slide Time: 25:25)

.

That means abstractor can be used to initialize the member elements if it is there, if it is

not any object created event. Actually this constructor will be useful to initialize the

object of the subclass of this class, because for an abstract class subclass can be created.

Now, here is an example where you can see how an abstract class can have its own

constructor and how the same constructor can be useful to initialize the subclass objects.

So, here we can see base is a abstract class constructor here it basically prints same

statement and the next is basically an abstract method namely the fun here. And the see

derived class is an subclass of the class base here and derived is a constructor of its own

it derives is there and void fun is the method which is basically implementation of the

abstract method that is there in the base class.

So, here derived is there, although this constructor is not called; that means, superclass

constructor is not called here you we can call it ok. I will tell you how this can be called

here anyway. Now let us have the demo about it so; that means, the constructor it is there

we can call it ok. We can just little change this program whether base class constructor

can be called here in this method in the derived class. So, you can do that yeah this

program is running fine yeah, so it is running.

(Refer Slide Time: 26:51)

Now, let us come to the code again switch to the code. Now we can call the base class

constructor here. So, in the derived class got not yeah yes kind. So, right next statement

we can add here before right yes. So, you can write super then within this one. So,

basically superclass constructor namely, base constructor will be called here right ok,

then save it compile it. So, here you can see both the derived class constructor, as well as

superclass constructor will be called here, illegal start of type ok.

(Refer Slide Time: 27:39)

So, can we write base here, simple base. Let us try whether the base call concern can be

called in this method or not. In this case super it does not work here, anyway so, the

superclass constructor cannot be used here, but we can use in the derived class

constructor base class constructor right system dot yeah you can just comment it yeah

fine. Then within this derived class method constructor go there right here right, then go

to the 2 statement right one is that super yeah, super within write yeah construct not 0,

right oh yeah there fine.

(Refer Slide Time: 28:09)

Now, we call this constructor a through the derived class constructor. Let us see whether

it works for us or not yeah. So, in this case it works that mean a constructor can be called

by means of the sub class constructor only now let us run this program. It will call the

superclass constructor as the base class constructor ok. So, this is basically we have

understood that a constructor can be declared in an abstract class and that same

constructor can be used in the derived class objects. So, this is the one example.

Now, let us have the another example, where in the last example we have discussed that

and abstract class with abstract method, but an abstract class may have the non abstract

that mean without any.

(Refer Slide Time: 29:03)

So, that method also can be exist, but this method can be accessed through the subclass

object. So, this is the one example that we are going to give a demo, here the class base

is the abstract class defined as an abstract keyword and then it has the method fun which

is basically non abstract method.

Now, we can call we can create a subclass object derived here inherited from the base

class and then the fun method is here it is basically overridden method here, because we

have overridden the fun method there it is like this one fine. Now let us come to the main

class here demonstration underscore 6 1 0 main class, we basically create an object for

the derived class derived the new derived. So, in this case you can understand d dot fun

we will call the fun method there ok.

So, let us run this program we can understand how it works for us yeah. So, it is derive is

called here ok. So, derive constructor is called and derive phone is called, so it is like

this. Now let us see how we can access the fun method which is defined they are in the

base class method lets come to the object here no yeah here.

(Refer Slide Time: 30:41)

So, now not here these as the previous program you have switched to the next one yeah.

So, this fun method which is defined they are in the base method is basically it is allowed

that abstract non abstract method.

Now, my question is that whether we can call this non-abstract method here in the

derived class or not. We can use it here we can use as a super right, you can use the super

keyword. For example, in the fun method or somewhere right we can write super dot fun,

super dot fun right and then this one. Now we can understand that we used the fun

method in the right. So, by super keyword we can refer to the member which is there in

the base class; although object is not created, but it will be accessed yeah. So, it is right

yeah we can understand this one.

So, now non abstract method may be there in the abstract class, like non-obstructive data

may be there in the abstract class they can be accessed using the super keyword that is

there in any subclass objects.

(Refer Slide Time: 32:07)

Our next example: basically demonstrating the final keyword that is there. Final keyword

is a very strict keyword, if you declare a class as final; that means, this class cannot be

inherited in any other class, that mean no subclass can be created from this one.

So, this is the one example where bike is the one class we have declared as a final. So,

final means, no inheritance is possible. Now this code definitely it is not a valid code

because, we are attempting to create a subclass called Honda 1, extending bike class,

bike class and then definitely if it is not possible. So, the next statement main class is

also not a valid one, now let us run this program, see whether this program gives a

compilation error or it works ok. So now, we can see it gives an error that that cannot

inherit from final bike. So, this means that we cannot do this one ok. So, this is the one.

Now, this question that arises that then what is the use of the final? Sometimes we can

have a stick restriction that this class is a stick class that no on class can be derived

because derivation means is an accessing some member in the superclass. So, if we want

to protect it, so we can fix the final keyword. Now a class can be made as a final, like a

method also can be made as a final, a variable also can be made as a final. Now, here in

the next example that, we are going to give a demo 6.12 a, showing that, how a method

can be declared as a final. If we declare a method as a final that means, this method

cannot be overridden in any way.

(Refer Slide Time: 33:55)

So, this is one example that we can see. Class base is the abstract class, that’s fine and

there is a method fun which is declared as a final. This means that no overheating is

possible. Now here derived is the derived class, extent base class it does not have any

other method or members is ok. Now we can create an object of derived class, but

referencing to base class and then we call the b dot fun. So, it will basically call the apps,

the final method which is the fun method derive declare in defined in base class. So, this

fun method is basically system dot out dot println final fun is called.

Now, let us run this program, we can have the quick demo, so that we can see about it

yeah. So, fine, so this is running. Now let us have see whether we can override it or not?

This is an attempt to override a method, this is an next demonstration please. So, we can

see, we are trying to override it at one method which is declared as a final method in base

class and derived class we are going to over write it in.

Now let us have the quick look at the program here. So, here class based abstract method

and then fun is also final. In derived we have the method derived is the constructor no

issue. Now, void pan here is basically our attempt to override the method which is there

in the base class. Now let us compile this program. If it compiles then means that over it

is in successful. Now let us run this program, compile this program it is 62b yeah fine

right. Now see it gives compilation that derive cannot overwrite fun in this. So, we have

understood that a method if it is declared as a final, in superclass then, it cannot be

overridden; however, it can be accessed in the subclass object by referring to this either

super or this course ok.

So, this is the demonstration about the inheritance and the many features in inheritance in

Java program. And we have discussed, so many things are there. If you advice is that you

should practice all the program that we have this used in this demonstration, so that, you

can understand more. And if you have any doubt, any confusion you are you can feel free

to approach at post your doubts in the forum so that, we can answer to your question.

Thank you, thanks for your attention.

