
Programming in Java
Prof. Debasis Samanta

Department of Computer Science Engineering
Indian Institute of Technology, Kharagpur

Lecture – 13
Inheritance

So, in this lecture we will discuss one important object oriented paradigm is called the

Inheritance. We have discussed the encapsulation, then inheritance is another important

object oriented paradigm; in today’s lecture we will discuss about the Inheritance. So,

first we should learn about the concept and then how this concept is basically

implementable in Java program.

(Refer Slide Time: 00:41)

 Now, inheritance is very common concept is a biological term although and you know

exactly the inheritance means basically inheritance a child children inherits from its

parents order it is the (Refer Time: 00:54). So, the concept it is like this and then single

inheritance means, if it inherits from on only on entity and multiple inheritance means if

one entity inherits from the multiple entities.

So, concept it is there the both single as well as multiple inheritance and then inheritance

can be also hierarchically with multiple levels; so, multi level inheritance. So, children

inherits from the parent grandchildren inherits from the children like this one.

(Refer Slide Time: 01:23)

So, these are concept actually very common it is there, but so far the object is concerned

the concept it is also there. Here for example, if we consider animal is a kind of object

then animal has the different other type of objects. So herbivore, carnivore like this one

so, here animal is a general whereas, herbivore is a special and if we see the lion and

hyena they are more special.

So, from generalized to more specialization is the concept of inheritance and this is

called the ej concept; that means, lion is an animal hyena is an animal; so, is ej concept.

So, they are followed they are basically related to the ej relationship. And there may be

many hierarchy; that means, that hierarchy means it is in the different level.

(Refer Slide Time: 02:11)

So, this is a concept of there now, here inheritance in Java is very useful for many

reason. The first reason is that using inheritance we can create given a class another

class. So, the concept of this thing is very important here.

(Refer Slide Time: 02:27)

Now, so this concept is basically given a class we usually call it is a super class. And, if

we can create another class from this class then this is called a sub class. As an example

here we can see vehicle is a super class whereas, car and the truck are the two sub

classes. Similarly, fire truck is another subclass of the class truck. So, here truck is the

super class of the sub class fire truck. So, this basically says that we can create the

number of classes inheriting from its super classes.

Now what is the concept of inheriting? We will come to this discussion about what

basically a sub class will inherit from its parent class. Now, this inheritance concept is

very important in Java program, it is because reusability. So, if we have a class say truck

then we can share this code of the class truck, and then we can implement some other

code in fire truck. So, it is basically code share ability or the reusability even the

maintainability, the code maintainability is very important aspect which can be done

using the concept of inheritance.

(Refer Slide Time: 03:43)

Now, how the inheritance of a class is possible. So, there is a syntax in Java program.

The inheritance in a class is possible by means upon key word called extends. So, here

the class this is the name of the subclass which basically you want to inherit. And this is

the name of the super class that from here you have to inherit and this is basically the

code of the subclass in addition to the code or the method or members which is there in

this subclass.

So, here basically all the codes which is there in super class is also accessible here in this

method. So this way, basically the idea of the code readability come into the picture. So,

this is the idea about that these things can be done using inheritance. Now let us see

some example so, that we can understand about this idea about the inheritance.

(Refer Slide Time: 04:39)

Very simple example, that we are going to discuss about say suppose there is a class

called the 2D point. So, 2D point is a class and we want to inherit another class called the

3D point. This means that 2D point, if it has some members and methods then all these

member and method may be is available to this 3D point or we can say that some method

can be overridden; that means, it can be redefined in this method. Now, let us see one

example. So, here is basically the statement of a class Point 2D it has two members x and

y and display is the method.

So, these are the composition of this class. Now, here Point 3D which basically inherits

point this is basically Point 3D inherits Point 2D. So, it is so it should be corrected this is

Point 2D. So, the Point 3D extends Point 2D; that means, Point 3D inherits from the

class point 2D. And, here we can see we declare integer z as a new elements on it. This

means that for this class Point 3D all these things which is there also use accessible here.

So, this means that x y and z all the three members are available to this or members of

this class Point 3D. How again you can note it that display method which is there in

Point 3D also it is there. However, the method which is defined here and there they are

different. This means that this display overrides the super class method display.

(Refer Slide Time: 06:25)

Now, on the other hand if we write say display 1 and display 2 then the two methods are

there and here with this change, what is the idea is that like x y is available to this class

Point 3D. Similarly, display 1 is also accessible to this method this one. So, this basically

a Point 2D is a generalization concept is a general, then Point 3D is a special one; that

means, it has many more things other than the Point 2D itself.

So, this is the concept of inheritance. And this is obviously, an example of single

inheritance and as it is a very simple example we usually call it a simple inheritance

example ok. So, this is the idea about the simple inheritance.

(Refer Slide Time: 07:19)

Simple inheritance and here is a main method that you can declare. Now if you can look

at this method little bit carefully you will be able to see these are the objects that we have

created for 2D class Point 2D and Point 3D. And these are the basically initialization.

Similarly, here the initialization of the point 3 there is basically point 2 ok. So, this is

basically initialization of point 2. Now, here if you see in P 2 being a point in class

basically Point 3D x y is accessible.

So, this is the idea is that by means by virtual inheritance all the members and methods

are accessible with the object of subclass. So, this is an example of the simple intent that

we have discussed. Now, we quickly discuss about what are the different type of

inheritance that is possible in the Java program.

(Refer Slide Time: 08:23)

Now, this is an example of single inheritance. So, if we can derive a subclass from a

super class these are simple inheritance, we can say other than simple and intense that

they are may be more than one class can be derived from the same class. So, it is called a

multiple single inheritance. For example, here subclass 1 is derived from the super class,

subclass 2 is also derived from the super class subclass 3. So, this is a another type of

inheritance and again a sub class can be derived from a super class another subclass can

be derived from another subclass (Refer Time: 08:56). So, this also is called a multi level

single inheritance.

Other than this multilevel single inheritance there is a concept of called the multiple

inheritance. Here for an example this class inherit from this and this. So, if a class

inherits from the two classes then it is the example of multiple inheritance. And, here is

basically the hybrid example here for example; this class inherit from this one this. So,

these are single however, this class inherits from this one. So, it is called a hybrid

inheritance that mean both single simple as well as multiple inheritance are there.

Now however, the super Java programming is concerned all inheritance are not possible

rather in Java we have only single inheritance, multiple single inheritance, multi level

single in intents are possible. Whereas, the other two are not possible Java does not

support multiple inheritance as well as hybrid inheritance.

(Refer Slide Time: 10:02)

Now, let us have little bit bigger example about inheritance maybe multiple multi

multiple single inheritance we can say. Here for example, person is a general class and

then student is another subclass which can be derived from the person. Similarly,

employees of say another subclass can be derived from the person. Now, what is the

actual idea about this inheritance that can be understand about it. Here basically person

may have some data as well as method of its. Here for example, these are the different

composition of the person. Now, let us come to the student it has another right and these

are another. Now what it does mean, that what it does mean that that the student class has

all these things in addition to this one.

Similarly, employee class has all these things in addition to this one. So, for an employee

class all these things are available, for a student class all these things are available. So,

this is the idea about that by means of inheritance all the course which is there; for

example, these methods are nothing, but code can be accessible to this one. All the codes

which is there also accessible to the employee class so, code (Refer Time: 11:23) is there.

So, by means of inheritance we can have this one. Now, here quick a Java programming

features our programming concept of this one.

(Refer Slide Time: 11:33)

As an example we can say about say a class person that we have declared whatever the

idea that we have mentioned here written in a Java code like ok. You can relate to that

figure pictures, that we have shown in the last slide is basically related to this one. This is

a curve class person is a general class and now student class can be defined like. So,

having this person is to us then we can have the student class which basically extends

person class; so, it is there.

Next so, this way the person class can be declared about and now here you can see here

the printData which is declared in this method, here is also used here to print the biodata

of the student class like this one. Now so, this is the class student which has been

inherited from the class person.

(Refer Slide Time: 12:31)

Now, likewise we can have another inheritance the employee, employee also can be

inherited from the class person who is basically has this one and whatever the different

methods are there we can declare here. So, this way the class student and class employee

is more what is called a code than the class person itself and inheritance is the utilization

of this one. So, once the all the classes are used then in your main class we can use those

things and you can process them.

(Refer Slide Time: 13:01)

Here for an example, we use the main method where the different objects of the class can

be declared individually as if they are the new class of their own. So, this way the single

inheritance is possible. Now, consider inheritance is like this is very simple not very

difficult to understand that is why Java makes the thing so simple. Only allowing single

inheritance and this inheritance can be gone into another level.

The same thing if I say suppose regular employee extends employee, then permanent

employee temporary employee extends employee. So, that other two different classes can

be inherited from the employee after the part employees inherited from personalization.

So, this way extension has no limit to any level we can go.

(Refer Slide Time: 13:51)

Now, here is another good example so, that you can understand about it. So, there are

many geometrical objects. So, all objects are of general type and then they can be a

special type. So for example, 1D object 2D object 3D object. On the other hand if we

consider the 3D object they are again different type, 2D object these are different type,

1D object is also different type. Now, further what is called the specialization also can be

done. For example, 2D object can be of the further specialization like triangle

quadrilateral and so on; quadrilateral maybe another specialization rectangle,

parallelogram this one.

Now, this kind of inheritance hierarchy; now if you want to create a program for

manipulating all geometrical objects so, first we can create the go objects which

basically has all the common attributes in it. Then whatever the special attributes slowly

can be added into its inherited classes. And then finally, the classes at the bottom level

can be obtained, they are basically the more refined or more specialized class that needs

to solve your problem. So, this is a concept that is followed there and now you can write

the programs or implementing all the type of objects that we have listed in a this section

only. So, this concept can be extended like this one. Now, we will discuss about one

concept the method overloading.

(Refer Slide Time: 15:13)

In the example of Point 3D inherited from the Point 2D, we have discussed about method

overriding; that means, that they are there is a method display which is basically defined

in both the classes. If we declare a method which is already defined in a super class then

the method called the overriding method. That means you have to override the method.

So, this concept is called a method overriding. So, method overriding it is basically

required that the method that we have declared in a super class can we can sometimes

needs to be redefined here.

(Refer Slide Time: 15:53)

So, if we want to do that if redefinement then we can do it like this one. So, this is again

continuation of the previous example that we have discussed about. Here the display

method which is declared here these display basically override these display and then we

can use it here in this program as we can see it is here. So, this method as we can as you

can see here this method as you can see here.

So, Point 2D p is a point of 2D class and Point 3D q is a point of 3D class. And, here you

can see x is another class which we have created which basically up casting; that means,

q is a point of 3D, but we can cast into 2D using this kind of special features are there.

So, typecasting we will discuss details here later on. So, then x dot display then this

basically we will call the display method of this class although in q it is overriding. So, it

is like this way we can have the access of this one this concept is called the dynamic

binding.

So, dynamic binding is the one kind of runtime what is called a scope rule. So, scope will

be decided from which, because if we cast with others then binding will be different and

so on. So, these the dynamic a binding will be demonstrated in our practical class; so,

that we can understand these features more clearly. So, this is the idea about method

overriding it is there.

(Refer Slide Time: 17:27)

Now, regarding this inherited inheritance concept one thing that we should note that a

subclass object can refer a super class variable or method if it is not overridden. That

means, all the methods and variables are accessible to the subclass if it is not defined in

that class itself. On the other hand a super class; that means the reverse is not possible.

That means, is super class cannot access any variable or any method which is defined in

the subclass.

So, one way traffic it is actually. So, we can access in from the subclass platform only,

but super from the super class platform other than the method are variables defining the

super class we cannot access anything from the subclass.

(Refer Slide Time: 18:19)

Now, there is another very important concept, it is called the super keyword which

basically used for many purpose. So, super keyword has the many implication in this;

using the super keyword in Java one can use one can refer immediate parent class

variables. They are basically instance variability is there; super also this keyword also

can be used to invoke parent class method and super also can be used to invoke parent

class constructor.

So, there are many use of this super class. In our subsequent slides we will see how the

super class can service the three different facilities: referencing variables, referencing

method and referencing the constructor those are there in super class.

(Refer Slide Time: 09:15)

Now, this is an example if you can look at this example little bit carefully, you will be

able to understand that this is basically an example using the super keyword, where we

can refer a parent class of a instance variable. Now, let us see in this example we can see

this color is a variable which is declared in a class animal and dog is another class which

extends animal and in the dog class we can declare again the color variable. So, this

color is basically overridden variable; that means, this color and this color they have the

two different scope. Now, here if we see in the super class the variable color is white

value is white whereas, in dog it is black.

Now, in the print color method which is basically new methods in the class dog it

basically if we refer this color then this refer to this color. But, if we want to mention that

this color I want to mention which belong to the super then I should write super dot

color. So, this super dot color will refer to this value whereas, this color will refer to this

one. Now, having this kind of concept now let us see this is basically on the main

program. So, here d an object of type this classes and then d dot printColor we will call it

and whenever it call it then it will basically show the output which will look like this. So,

output is because of this first print color black, because this one and then super color

white.

So, these are the two output is there. So, this is a concept that super keyword is used to

reference the parent class instance variable. Now, this is this has another also use it is

called like the referencing the parent class variable, the super also can be used to

reference the parent class method. The method is the concept is same as the previous

one. Now, again look at this example here the animal is another class which has the

method eat. Again in the dog which is an inherited from the inherit in subclass of the

super class animal, it also declared eat.

This mean, that this method is basically an overriding method than this one. So, this

method a has its own which has the scope within the class dog and this method has this

kind of print statement. Now, bark is their totally new method belong to this and work is

also another method which is defined this. So, bark and work are the newly added

method in the class dog. Now, wherever now you see the work method which is a new

method in the class dog it called this one. Now, is super dot eat you can understand what

it does mean. It means that this is the method of this whereas, bark is the as usual

because there is no resolution and then it is basically this one eat.

So, these basically resolve the namespace. So, eat method belongs to this if it is prefixed

by super dot and these are the method it is there. So, using this super method we can

refer that this method belongs to whether it is a super class method or belongs to the

subclass method if it is overridden. And, this is an example of this one very simple you

can understand d that dog object is created and d dot work, if we call you can guess that

what output it should give it you; obviously, you can check that the output that it should

give you this one. So, dog work super dot eat it is basically eating then, bark it will

barking and then eat again eating great.

(Refer Slide Time: 23:17)

So, this kind of output you can see it if you run this program. So, this concept is the

concept of that using super class we can resolve the parent class method then the base

class method.

(Refer Slide Time: 23:29)

Now, this is another example of use of super class is basically invoking the parent class

constructor. We will use this kind of construct frequently in our subsequent program. So,

we should understand it very carefully again this is a super class, this has one constructor

animal. So, this is the super class constructor, dog is another class is an inherited from

the super class in animal. So, it is a subclass of animal and here if we see dog is a

constructor. And, this draw constructor we use the super.

This means that if we use this say means dog will also call the super class constructor

that is then animal is called here. So, is basically if we writing this one means it is a

super class constructor is called here and then finally, dog his own method. So, this

means that in this constructor we has the two print statement this and this as well as this

one. Now, if we run this test case and then if we run this one then you can see that this

kind of output you can get it. Animal is created and dog is created because of these two

things are there.

So, this is the concept of the use of super here the super keyword; so, that if we write

super within parentheses this indicates that it will basically call the parent class

constructor. So, super we can see that super is a very important keyword. We have used

similar kind of key word this earlier and then another key word new also earlier. So,

those new these and super are very important keyword, we will understand also few

more keywords later on.

(Refer Slide Time: 25:15)

Now, this is another example of invoking parent a parent class constructor using the

super. This example similar to the previous example, previous example was pretty

simple. Here you can see Point 2D is the super class, 3D is an subclass and here

whenever we create a constructor Point 3D we will construct this one; that means, we

can. Now, here again you can note that in Point 2D there are two constructors. So, super

if we call then which constructor it will refer to, actually it depends on what kind of

arguments are there.

If we call this kind of argument then this is basically reflect to that that constructor who

is matches its argument. For example, here super is a default constructor. On the other

hand we could write that super using these are the say three different value; then that

constructor will be called here. So, it depends on so using the parsing proper argument

which matching to that constructor, now in the super will refer to that constructor. So,

this is the idea about the super constructor is there.

(Refer Slide Time: 26:23)

And whenever we use this kind of inheritance one very important concept is that

dynamic method resolution. So, this concept is basically runtime polymorphism if we

create many object, many object many object finally, which belongs to the method

belongs to which object it little bit confusing. So, that confusion can be avoided by

means of ok, if you can understand this concept little bit carefully.

(Refer Slide Time: 26:45)

Now, one example can be given so, that you can understand about that which binding;

that means, which are the method reflected to a particular call. Now, we can consider this

example here. So, Bike is a super class, the Splendor is another subclass which has the

run method, you can see run is overeating method here. And, after this declaration of the

two classes super class and subclass we have the main method declared here ok. So, it is

very simple, so b 1 is an object of type this class; that means, if we run b dot run so, it

will run this code method.

On the other hand here bike b 2; that means, we create an object of type b 2 and b 2 dot

run the resolution is quite see that this method will be run in this case. On the other hand

now come here this is little bit tricky. Now, here we create an object by means of this

memory allocator then slender, but actually we cast it. And, then we store it b 3, but its

type of the Bike object and then if we call this b 3 dot run. So, then which method will be

called here. Actually in this case as it is the object of splendor although it is b 3 run, we

should not confuse that this b 3 as the object of class bike then this run is this one, it is

not like that and it is basically Splendor; so, it is run.

This means that dynamically so, b 3 dot run it changed from this method to this method.

So, it is called a runtime polymorphism and it has many utilization, those utilization we

will discussed when discuss about the packages and others. So, if we have to store many

objects in an array and then objects of different type then better idea is that that array can

be declared of the super class object type x. And, then if it is declare super class any

subclass object can be put into that or array and it can be process in y irrespective of the

different object. So, this is the one good example of the runtime polymorphism in the

Java.

(Refer Slide Time: 29:05)

Now, this is another example is you can guess that what output it will give it to for you.

So, A this is a super class, this is a derived class, inherited class, subclass and this is the

main method and you can understand that how it can. So, you just look at this point and

then you can try to give the answer then you can understand that whether you have

understood it or not.

So, if you run it this program and it will give this kind of output you can say and that you

can resolve it how it is basically giving this kind of output. So, this basically the idea

about that if inheritance is there, you have to little bit clear about that how the different

method is called there.

(Refer Slide Time: 29:51)

Now, I will quickly discuss about two more important concepts in Java: one is called the

abstract class and another is the final class. A class can be declared an abstract if we

declare an abstract class then its all method and all data member also can be declared an

abstract actually.

(Refer Slide Time: 30:09)

So, abstract class is basically the class which does not have any method to be defined

clearly or the method can be kept as a voyage that mean without any code. Now, abstract

class as it does not have any code or any other thing. So, that any object of that class

cannot be created.

(Refer Slide Time: 30:31)

So, it has certain properties like and abstract class it is declared by means of a specifier is

called a abstract. And, it can have again abstract method and non-abstract method. All the

method that we have discussed so far, non-abstract if a method is prefixed with the

abstract keyword then it is called the abstract method. It cannot be instantiated this

means that no object can be created for an abstract class. And, it can have final method if

the abstract class has a final method then that object cannot be that method cannot be

overridden in its derived class.

 So, this is the idea about the abstract class and then so, abstract class is like this. So, if

we can declare a method no objective is can be created, but it can it can be used to derive

many classes from it. It is basically gives a template, template means this is a

generalization a concept that this one whose ultimate implementation will be done when

we derive the subclass.

(Refer Slide Time: 31:41)

Then the final keyword: the final keyword is very one is a strict keyword we can say that

if we can declare a final, then this final class cannot be used for inheritance. So, no class

can be derived from the final class that mean final class cannot be a super class. And, in

addition to the declaration of a class as a final we can declare any variable any method in

a class as a final also.

If we declare a variable as a final so, that variable cannot be overridden in any derived

class. And, if a method is declared as a final so, same method cannot be overridden in

any class objects. So, final in the sense final that it is basically no more implementation

in any derived class is possible.

(Refer Slide Time: 32:31)

Now, here is an example here we can see the class Bike is declared as a final. This means

that this will give an error because it is not permissible. So, this is an error ok.

(Refer Slide Time: 32:49)

So, we have discussed about the basic concepts that is related to the inheritance of

classes in Java programs. Now, there are many more questions that can be answered in

subsequent classes. For example, can you inherit a class from other class which is

defined in other package? Now, that here concept of package first should be learnt; so,

that we can give answer to this question. And, then information hiding that is on another

pending job that we will discuss in our next lecture hours.

Thank you very much.

