
Programming in Java
Prof. Debasis Samanta

Department of Computer Science Engineering
Indian Institute of Technology, Kharagpur

Lecture – 12
Demonstration – V

In the last module we have learned about the static scope role in Java and also a little bit

about writing recursive program. In this Demonstration we have a quick illustration

about the different concepts regarding the scope rules that we have learned and then

recursive program writing.

(Refer Slide Time: 00:33)

Before going to that we should have basic control structure, I know that you if you are

already an experience C programmer for you all those basic control structure is known to

you, but those are new for them it is just to make the consistency we will just discuss

about quickly. So, there are different loop structures and then switch case will be covered

and then finally, discuss about the scope rule and then Java program writing using

recursive function. So, let us have the quick demo about first our example is how we can

use the while loop let us see the program.

(Refer Slide Time: 01:23)

So, this is a one program as you can see this program is basically use the while and

within this while and there is a condition; that means, this loop will continue until the

value of count is less than 11. And you can guess that what this while loop into it

basically includes on print statement, it will basically print the odd numbers starting from

0 0 next sort numbers star after 0 is 1 of course, so, 1 3 5 7 like this one.

Now, let us run this program. So, that you can see how this while loop will roll it, you

write the compilation, you have to compile it right the Java C. So, this is a program that

is compiled the here we can see the program is compiled successfully now let us run this

program. So, Java yes and as you can see this a printing first ten odd numbers it is here.

Now, this is a one form of while loop now let us have another form we can open 5.2

program

(Refer Slide Time: 02:35)

So, this is another program and it is basically same thing in the earlier program it is

printing the odd number, but as you can see this program is to print the first ten even

numbers. And here instead of while we have used the do while statement and is most the

same thing, but obviously, there is a difference between the while and do while. Now let

us run this program and then let us first we have to compile it yeah so, running this

program. So, it basically print it, now if I asked you what is the difference between while

and do while?

So, while basically check the condition first whereas, in the do while at least one loop

will roll and then once the one loop is done then the condition check at the end. So, the

difference is that while loop may not execute in single loop, but at least do while at least

one loop will be executed.

(Refer Slide Time: 03:47)

Now, similar to while and do while there is another constructor in Java it is called the for

loop. For loop is totally different than the while loop or do while loop. Now, in case of

any loop there are three things are to be considered initialization for the loop variable, in

the first two examples the loop variable was count.

Now, initialization of the loop variable and then the condition checking; that means,

whether the loop has reaches it’s the termination condition or not and then updation of

the loop variable. Now all the three things can be done using for statement in one line.

Now here we can see the first statement here int i in this case it is the loop variable; that

means, it is the this is the variable i which controls the execution of the loop. So, here int

i equals to 1; that means, initialization of the loop variable as 1 and this is the condition

checking that look will continue until the value of i is less than 11 till the value of i is

less than 11.

Once, the value of i is equals to 11 or more it will exit the loop and i plus plus once the

loop is completed one its term then it will increase the value i automatically is in the one.

Now here in this for loop as you can see is a simple print statement which basically print

the value of i. This means that this for loop will print i equals to 1 to i equal to 10 the

10th first integer number. So, if we run this program then we will be able to see exactly

how this for loop works for you. So, this for loop as we expected that it prints 1 to 10

consecutively.

Now, so, this is a example of the do while and for loop or the three loop structures in

Java program it is very similar to the structures that is there already in C and C plus plus.

(Refer Slide Time: 06:03)

Now, the loop can be control or it can be terminated abnormally and before for this thing

there are two more statement is there called the break and continue. So, the purpose of

the continue statement is that if some condition is satisfied it will not execute the

remaining part in the for loop for block.

For example, in this example here the for loop we have this if i; that means, i not 2 there

means if i is a even number, then it will not execute the next statement namely system

dot out print ln and it will go to the next round of the loop. So, continue is basically skip

the remaining part in the for loop is going to the loop again. Now if we run this program

as it is you can anticipate that this will print the first statement in the for loop is print;

that means, it will print two numbers in one line and whenever there is a mode it will go

to the next line like this one. So, is a the print it will print the values here.

Here we can see 0 1 in one line and then mode so, 2 it go to the next and so on so on. So,

continue statement is executed after every odd even number in the for loop.

(Refer Slide Time: 07:35)

So, this is idea about the continue like continue there is one break statement; the break

statement whenever a condition reaches. So, it is basically terminate the loop without any

satisfaction of the loop control termination criteria. So, this is example here we can see

here i mode 10 indicates that whenever the value of i reaches to 10 or multiple of 10

whatever it is there so, the loop will be terminated.

So, in this for loop as we can see int i is equal to 1 and you can see the condition here is

basically null we do not give any condition; that means, if you do not put any condition

checking there then that loop will suppose to execute for infinite times. But if there is a

break statement and if there is a condition which satisfy the condition then the break

statement is execute then loop will be terminated there. So, although it is look like an

infinite loop, but because of the break there is a condition that it will terminate the loop.

Now, let us run this program as you can see it will pin i equals to 1 2 3 and till i equals to

till it reaches i equals to 10; once i equals to 10 loop will break and it will terminate the

loop yeah. So, it is basically the concept that how the break statement is there? Now so,

we have learned about basic control structures there mainly the while do while and for

loop with break and continue.

(Refer Slide Time: 09:03)

Now, in addition to the simple control structures there is basically a decision structure if

else; if else are very simple we do not have to discuss it in a detailed manner, but like this

is if int is a multiple decision checking is done in Java by means of switch case. Now, we

will discuss about the next program in switch case; now here is a one example before

going to this to discuss the switch case statement is basically how we can test whether a

number is prime or not.

So, it is basically usage of both for loop as well as if statement now for basically you

have to test till certain number is prime or not the condition is that i less than num 2

because, you have to check for this kind of things; that means, if any number within this

num 2 if we have to test that whether num is a prime or not. So, up to half of these things

we have to roll this loop. So, that we can check that any number within this range it is

divisible by this number or not so, the divisibility check by num not i. So, it basically

check the divisibility.

That means it is divisible by this i where i is basically 2 to that range and then if it is

there then it will check that ok, if it is divisible then it is not a prime. So, each prime is a

Boolean variable declared a false and then is break because no more testing is required

otherwise it will continue. Now, we can test this program by passing an input from the

keyboard and here is the execution of this program capital so, 5.6 5.6. So, now, v 6 as it

is on the 6 is prime now let us run this 31; 31is a prime so, it will check that prime.

So, like this so, you can test that using this control we can test this. So, logic is basically

any logic can be implemented using for or while and then if else statement there another

logic structures is there as I told you the switch case structure let us consider one simple

program.

(Refer Slide Time: 11:23)

And this switch case is basically here we can see. So, and we can see first few blocks is

there do while blocked it basically print something until you type 1 to 5 any number if

you type anything. So, this loop will continue ok. So, in order to come out from this loop

you have to either print 1 or any number less than greater than less than 5 actually here.

So, if any number you type better than 5 it is basically break the loop now let us see once

the value of i chosen from here. That means user can enter any value which is greater

than or equals to 1 to less than auricles to 5; now once the value is read and then there is

a case.

(Refer Slide Time: 12:11)

So, depending on the type the number that you have chosen we have a lot of switch cases

is there; that mean if i that we have written in the first statement here the choice

basically. So, it depending on the choice it will depending on the different statement will

be executed.

If choice is equals to 1 so, the case 1 code will be executed and if choice equals to 2 the

case 2 code will be executed. Similarly, for all 5 cases the different statements are there

in this program and you can see for. So, here basically switch basically switch based on

the value of same switch variable here choice the different cases will be executed all

cases are basically few course are there. And, then all case statement will be term at the

end of this case statement there will be break; that means, after this case is there it will

break that switch loop actually.

So, this is a structure of the switch case concept in Java program. Now let us run this

program so, that you can understand how it will work. So, advice is that you should have

this code and then try to practice of your own; so, that you can understand how the codes

are working. So, here now choice 1 if I press say 9, then you can understand what will

happen it will loop so, it is asking this one; now again choice say 2. So, it is basically tell

about the switch. So, this is a way that program can be executed. So, this is an simple

example of switch case statement.

 (Refer Slide Time: 13:57)

Now, so, these are the control structures which are widely used in your Java program and

you have to learn it you have to practice it. So, that you should have very skill about all

these programs; now once that things are there our next topics in this discussion

demonstration is the usage of scope rule. As you have discussed about that Java follows

2 scope rule static and dynamic so, in this demonstration we will limit our discussion do

static scope full only.

Now, let us have a quick look to this program and here we can define a class the name of

the class is demonstration underscore 58, these a name of the class and under this class

only main method very simple class. And you can see the, for the main method the

matching and then beginning curly brackets are there. In addition to this we define a

block a block in a program can be specified by means of paching pan thersis. So, here the

block it is there; now in this block inside this block you see x equals to 10 as an integer

variable is declared.

Now so, far the scope rule is concerned the value of x is valid within this block only; that

means, it is valid that system dot out dot print ln x is correct. However, outside this block

if we try to access a system dot out dot print ln x then it will give an error and that errors

can be reported during the compilation time. Now, let us change this the last statement

system dot out dot print ln x; that means, we are trying to print it although it does not

have the scope now save the program and run this program and let us see what will

happen. So, it will give an error because, system dot out dot print ln x the last statement

in this class has out of scope the x does not. So, it is basically compilation error.

Now, again if we make it commenting the program and then we will see this program a

will be compiled successfully and also executable save this program ok. So, program is

now compiled successfully earlier it was giving error now the program will give the

result that it is x is equal to 10. So, you can understand the scope it is very simple

example, but it is understandable that: what is a scope of a variable inside a block. So,

this is the scope in a block.

(Refer Slide Time: 16:39)

Now there are few more example this is \another example you can see and how you can

understand also what is the scope of this example. Now can you tell me what is the scope

of this example; here x is the variable for which we want to discuss the scope.

Now, if you see here int x equals to 0 it is declared within the for loop this means that

this is the scope of x within the for loop only. So, within the for loop there is a print

statement which print the value of x it is, but outside this for loop if you attempt to print

it will give an error. So, let us uncomment this one and then run this program then you

will be able to understand that it will give a compile time error because here the

statement it is out of scope.

So, here the x the scope of these values variable x is within the for loop. So, it is an error

is the defining that the scope is not there; now again comment it run the save the program

and then run this program here no compilation error and run it will print basically for

loop will be executed successfully in this case.

So, for loop is executed you can see it. Now how you can change the scope rule now let

us come to another example so, that we can see how the scope can be increased here. So,

is the next example the similar to the last example.

(Refer Slide Time: 18:01)

Here you can see int x which declared outside the for loop this means that the value of x

is spread throughout the for loop as well as outside this for loop also. Earlier when it was

declared within the for it was only scope within the for, but in this case the scope is the

entire program. So, this program is self explanatory as we have already understood about

it. So, this is about the simple concept of scope and fine. So, let us discuss about one

more example which has the different contexts of the scope let us run the program 5

point 5.11 yeah fine.

(Refer Slide Time: 18:47)

So, this is the one program; now let us quickly examine this program watch this program

little bit here x and y are the 2 variables declared and the 2 variables have the different

scope. So, far the scope of x is concerned as it is declared in the main method this means

that the scope of this variable x is the entire method.

So, when you have from this method the value can be accessible on the other hand. If we

see the y int y 20 which is declared within the block with under this block under a; that

means, the scope of this y is within this block. So, in the statement after system dot out

print ln x and y the next statement is valid because, it will be within this scope. However,

outside this y is equal to 100 it will give an error.

Now let us run this program and then we can see that it is giving the compile time error.

So, all these error will be reported during the compile time; that means, Java compiler

will check the scope of all variables for you. So, if there is any error in the scope then it

will report it the competition will not be successful. So, this is the compile time error we

can say.

Now, if we comment it then definitely because scope is now as closed and then it is it

will work perfectly. So, here no compilation error program will give the output according

to the program ok. So, we can understand about the concept of scope here. Now, there

are many more things about the scope we have discussed about the global variable idea

in Java program, Java does not support the declaration of global variable.

(Refer Slide Time: 20:37)

However the concept of global variable is by means of the concept of class variable; a

class variable and then instance variable as we have already learnt about it. Here for

example, x y r these are the instance variable because they are declared as simple as a

type; on the other hand if we declare a variable with a skiver static then it is called the

class variable, in this case we can see the circle count is an example of a class variable.

So, we have declared here one class variable namely circle count and then three instance

variable x y r and these are the usual code of the constructor of the class circle. So, we

have already discussed is I do not want to discuss it more and the two methods

circumference error as usual.

(Refer Slide Time: 21:27)

Now, let us come to the main method here; now you have to just watch the main method

little bit carefully. So, in the first statement we create an object of class circle the name of

the object is c 1 and it will print the c 1 dot circle count. Now here once the object c 1 is

created it will call its constructer, now here the default constructor. So, if you go to the

default constructor then you see in the default constructor here in the last constructor that

we can see. So, it will basically it will initialize all the instance variable as 0 0.1 0.00 and

0 point 1 xy and r and the circle come will be increased by 1.

Initially when we create when we define this circle count be 0. So, global variable is 0

initialized and after this whenever the constructor is called for this it will increment this

one. So, now, let us come to the main method here again yeah. So, once the circle c 1 is

created so, c 1 has the value circle count this means that if we print in this it will print the

value 1. On the other and next c 2 create object is create created now it will call another

constructor 5.0 which is the second constructor in the line of different constructors are

here.

So, public circle double r here also circle count plus plus that mean it will increase the

circle count by 1. So, after the c 2 object is created in the main so, the circle count

become 2. So, it will print the 2 and similarly circle c this is the 3rd constructor the 1st

concert I should say it will be invoked to create the circle class object c 3 and then c 3.

And, then circle count in this case will be again in increased by 1 and then here the fine

right circle c this is the 2nd constructor right this one now in the 2 now let us run this

program and then you will be able to see the output.

(Refer Slide Time: 23:33)

So, here each circle of object is created once the circle object is created the static variable

will be processed according to the objects construction and then it will basically run the

it will print the current value of this one. And here we can understand that the circle

count is a global variable look like for all instances of the objects there is only 1

instances of this variable. So, here we can see the running of the output is basically 1 2 3.

 Now let us switch to the program again and you can see we are just giving to the last

statement which has been commented here, I just removing the comment here let us

uncomment this statement yeah up uncomment this statement fine. Now, comment it

now little bit if bigger the window here fine yes now if we see the right.

(Refer Slide Time: 24:33)

So, after creating this c 1 circle right one and we are now in this statement now can you

tell me what exactly the value that it will print. So, here in the first object circle count

has been created 1 2 3 and then when you are come to here. So, the circle count for this c

1 is 3 and again 3 and 3. So, basically the latest values of the circle count will be

accessed. So, it basically indicates that let us say the compile this program and run it. So,

here in the last statement we will print the value of circle count which is the ultimate

value after the end of this program.

So, here you can see it printing the 3 3 3 this is the latest value after ah. So, it has

basically one instance and then one it is updated by any object it will be reflected to any

other objects which basically has the access of this value. Now so, this is the idea about

the static variable concept likewise there is a concept of class method and instance

method our next program will to illustrate the concept of these two methods in a Java

program the class method and instance method.

(Refer Slide Time: 25:45)

We have already discussed about that a method is an instance method in order to execute

this method an object is required. So, via an object the method will be called. On the

other hand the class method is a method which does not require any object to be created

the method can be called itself.

So, this example basically to illustrate the concept of class method and instance method;

now let us here all the circles are basically instance method because, whenever you have

to create an object all these constructor will be called automatically, say they are by

virtue of default that the instance method. Now we declare one method let us go to here

the circle figure public circle bigger the 2nd years. Now, this method little bit bigger the

window yes yeah so, fine.

(Refer Slide Time: 26:43)

Now, is the 1st method we can see bigger. So, this is the method public circle bigger

circle c. So, method it basically argument will be an object circle is the c dot r greater

than r return c; that means, that c is a bigger circle else return these that mean the current

circle. So, this is the one simple method and this is called the instance method.

On the other hand the another method bigger is an overriding method we have discussed,

but this method is different to the previous method by two things; one is called the static

keyword the 2nd one has the static; this indicates that this method bigger is basically the

class method and also it is different from the argument point of view. Earlier only one

argument whereas, this is the two arguments all arguments are of type circle type of

objects.

 The code is like this is a dot r greater than b dot r return a then a is a bigger circle else

return b. So, it will basically return that is a return type is circle here in this case. Now,

let us see the main method here we create an object 2 object, 3 object, 4 objects here of

course. Anyway so, 1st two objects are type class circle a b and then here we can see the

b a dot bigger. So, basically a bigger method is invoked with reference to the object a.

So, it is an instance method on the other hand the second call.

So, bigger method is called with reference to any object it is a circle in terms of circle dot

bigger so; that means, without creating any object this method is called. So, this is an

example of invoking the class method. So, here the two invocation the instance method

and class method and it indicates that the way of the class method works differently than

the instance method like this.

So, so this is an example of instance method and class method ok. So, these are the main

concept those are there in java so, far the static scope rule is concerned. Now, let us

switch to our demonstration to give the execution of recursive program we have already

discussed while we are discussing about the theoretical is that recursion recursive

program writing in java. So, let us first run the recursive calculation recursive way

calculating the factorial.

(Refer Slide Time: 29:09)

So, this program is well understood I believe. So, here factorial is a method which is

defined in the class recursive factorial and then recursion is basically following the

recursive definition of factorial calculation the code is like this. Very simple n factorial is

equals to n star factor n minus 1 with termination conditions that 0 factorial equals to 1.

So, this is the implementation of this factorial definition of n; now in the main method

we create an object of type of the class recursive factorial here and then pass the value to

this subject from the keyboard as an input and then we call this x dot factorial x dot n;

that means, the we call the method in these subject of the class recursive factorial and run

it. Now let us run this program quickly you can understand that how it will run recursive

fine.

Now, as it is a input to be passed because r 0 is there. So, we should give the input say 5

right if we run this program again with some say larger value say 10 it will also execute

for you yeah. So, it is like this, but it cannot take very large number say for example, if

we say 100 you will see whether your program is now. So, factor of 100 if 0 it is giving it

is because it is out of pound of this one. So, in that case integer has its own limit. So, if

we declare say long integer instead of int it may take some larger values anyway

changing this we can change this one, but we have to changes for that it is later then

exercise for you. Now, let us come to another recursive program to print the Fibonacci

sequence.

(Refer Slide Time: 31:01)

So, this is the program we have already familiar to the program that we have discussed in

our last module and. So, here again the recursive definition of a nth factorial is basically

n minus 1 factorial plus n minus 2 factorial and then termination condition is that 0th

factorial equals to 0 and then 1 factorial is 1. So, these are the 2 termination condition

followed by the recursive definition it is the same as writing the factorial we create an

object of type recursive.

Fibonacci here is the class where we have defined the recursive method Fibonacci and

we call this and this for loop is basically print in succession all the Fibonacci number till

the x dot n this is the user different number that up to which the Fibonacci number you

want to print.

Now, suppose you want to print up to tenth Fibonacci number. So, we can run this

program with passing input; here input needs to be passed through the keyboard let it be

10 and you can understand that how it will print 10 Fibonacci numbers in the Fibonacci

series 10 ok. So, it print the first 10 Fibonacci numbers in the few Fibonacci series. So,

this basically the recursive now let us come to the GCD calculation that we have

discussed in our theoretical class.

(Refer Slide Time: 32:25)

So, this GCD calculation is basically has this kind of recursion rule is like this one and

we have implemented there is a few more termination condition. Now, you can see in

case of recursive factorial only one termination in case of Fibonacci there are two

termination condition. Whereas, in case of GCD is a couple of termination condition

there and all termination condition followed by the recursive call so, in this case

recursive call gcd m n mod m. So, this is as per the recursive definition of this one.

 Now here two integer values are to be passed and then Java program will call for this

recursive function which is defined here as a gcd and we call the gcd with the two value

passed to it and it will call. So, g is a object of type this class is created and call this

function and then it will execute a let us run this program so, that you can understand

about its execution ok. First let us see enter 31 and then 13. So, this is 2 input you have

to give it give 2 input 31 and 13 13.

(Refer Slide Time: 33:39)

 Now you can see that GCD is 1; now let us run this program with say 33 and 11 you can

understand that the gcd that value it will give you right. Even if you give you 11 and 33

also it will work yeah, now if we give 0 and say 100 you can understand that what is the

gcd of this number 100 so, it will print the 100 ok.

Now, if you give. So, this is the way that the GCD and with this function is call for

integral value only you should pass always integer if you give some non integer value it

will report an error.

(Refer Slide Time: 34:25)

For example, if we run this program passing say non integral value it is not acceptable to

the run time in, but as n Java run time invertise say giving an error. So, it is basically you

have to give the integral value always. Now so, we have learned about factorial

calculation; so, factorial calculation, Fibonacci series calculation, GCD calculation like

this one. So, most important thing that you should understand that how you can cast a

program by following the recursive definition.

(Refer Slide Time: 34:53)

If every program has its loop all this program has its counter example of recursion

actually. So, if a program needs to be solved by means of some looping construct then

the same program can be solve by means of loop recursive version also. Now let us have

a quick look of this simple example you can understand this is the program we have

declared recursively. So, it basically here is my method is a recursive method which is

declared in the class demonstration under 517 and the method has the termination and

one important thing is that every recursive functions should have termination statement.

Without termination the recursion will go on infinite execution never terminate this is not

desirable. So, every recursive program should have in this case we can see that counter

recursive is 0. So, along counter is not equals to 0 so, along counter is not equal to 0 it

will go on counting and in this case my method whenever it will call first time it will

print the value of count and then my method call will be called again with reduce value

of counts. So, if we pass say counter value it will call subsequently less counter so on so

on.

And then print all the 10 counter and when there recursion is over it will come to the

previous counter value. So, now, if you see whenever before recursive call it will pin and

then on recursion it will pin some values and go on printing. And then let us see exactly:

what is the output of this call. So, if we call this recursion with 10 as a value as counter

how it will do it; I can explain that why this output is there you can also explain that how

this output is happened to this program yeah.

You can see here the two series of statement because of the two print statement and then

recursion is go on going on printing this one and then recursive call and when the

recursion is back from the loop on it is again starting this one. So, there are two series of

statement and the recursion is the there actually recursion exhibition for use a stack it

basically before terminating recursion it goes to the call of the recursion so on. So, that is

why it is there ok. So, this is the one example now let us have the quick look of another

example for your own practice.

(Refer Slide Time: 37:11)

So, again you can learn it from these series in the same line of the previous example one;

you can guess that what input it should give it again p is the method which is defined

here recursively. Now let us run this program on it after the execution of this program

with the value of p as 5 here we have do not have to value 5 it will print this one.

Anyways so, regarding the scope, the control structures and then recursive program

writing is a matter of practice. So, I advise you to practice more and more programs in

this line so, that you can learn it. For your own practice if you need the program all those

course that we have given here demonstration you can have it, you just send me send us

a request. So, that we can send it to you, thank you very much and have a fun for the

Java programming more.

Thank you.

