
Compiler Design
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 09
Lexical Analysis (Contd)

So, regular definitions so, we have seen few in the last class today we will continue with

that at the beginning.

(Refer Slide Time: 00:23)

So, definition each definition for we have got a corresponding regular expression. For

example, this d 1 has got a regular expression corresponding to each which is r 1 d 2 has

got  r  2.  So,  we  generally  write  it  in  this  format  d  1  then  1  arrow  and  then  the

corresponding regular expression.  A typical  example is say this letter  underscore is a

definition and that definition is governed by this particular regular expression. And as we

have seen in the definition of regular expression so, this is A or B or up to capital Z than

small a small b up to this should be small z not big Z, this should be small z and the

underscore character

Then the digit is another definition is 0 1 0 or 1 or 2 or something up to 9. Then id an

identifiers  another  definition  which is  composed of the  previous two definitions  like

letter underscore followed by letter underscore or digit whole star. So, the definition says

of  this  id  this  definition  says  that  any  character  string  that  matches  this  particular



definition should start with the letter or underscore character and that is if you substitute

this right hand side of this part here. So, what you get is A or B or Z or underscore

character followed by this characters or digits. So, this part this whole thing is actually

something like this. So, this is A or B or Z or a or b up to small z. Then you have got the

underscore character.

So, this whole thing followed by again this one that A or B or Z or small a or small b or

small z underscore or 0 or 1 or up to 9 and this whole star. So, this is the full thing so,

this is written in a short hand form in the here. So, for making the expression shorter so

we  normally  followed  this  type  of  strategy  that  we  follow we  define  some  regular

definition for some bigger parts. And then sub parts and then use those sub parts or sub

definitions to define a more complex expression. So, this is the way we will proceed so

we will look in to some more examples like shape.

(Refer Slide Time: 03:03)

So, so, before that so, we have got some other notations as well like if I have a regular

expression r, then we say that r star is 0 or more occurrence of r. Similarly, r plus is

another notation. So, this one it says that one or more instances. So, it is the only the

epsilon is excluded so, all others are there. So, basically language which is composed of r

plus is equal to the language which is composed of r star so, language which is composed

of r star minus the null string epsilon. So, then there r question mark so, this is 0 or 1



occurrence of r. So, this is it  is not multiple occurrence so, it is 0 or 1 either 0 or 1

occurrence.

Then sometimes we define a character class for that we write like within square bracket

we write abc. So, this means that I am talking about the characters a b and c and they are

forming a class. So, this short hands will be used for writing complex expressions which

otherwise becomes a bit ineligible to understand so, this short hands will be used. For

example, this letter underscore previously you have seen a big definition. So, here it is

shortened so, I am writing like A to Z so, this is a range A to Z then small a to small z.

So, by character class definitions of this becomes one regular definition similarly digit

instead of writing each and every digit so, it is we write as 0 to 9. Actually these are for

human understanding so, as long as human being can understand the definitions so, it is

fine. Of course, if you want to put it in a computer. So, or in some program then of

course, you have to write explicitly a or b or c or d like that.

But for human understanding so, it is better if we use short hands so this is actually the

usage of shorthand. Similarly, id is letter underscore followed by letter  underscore or

digit  star.  So,  these  are  the  some extensions  that  will  be  using  while  handling  with

handling the regular expressions.

(Refer Slide Time: 05:23)

Now, let  us  look into some examples,  suppose I  am considering  strings  over  binary

symbols 0 and 1. So, my in the language the alphabet set contains only two symbols 0



and 1. So, what is the language corresponding to the first regular expression? So, 0 or 1

star so, it means that if the star is not there so, it says 1 occurrence of 0 or 1 that is a

single beat. Now, there is a star over this so; that means, that all binary strings including

empty strings. So, everything will be acceptable in that language because, it says any

occurrence of 0’s and 1’s with alternating 0’s and 1’s or the null string. So, everything is

there so, this is the thing, the second regular expression. So, 0 or 1 followed by 0 or 1

start  it  is  all  non-empty  binary  strings.  So,  it  so,  this  0  or  1  star  means  0  or  more

occurrences of the characters 0 and 1.

 And before that there is another part of the regular expression which is 0 or 1 so; that

means, the overall at least 1 0 or 1 1 must appear then rest of the characters they are may

not be any more characters. So, single length string or maybe multiple length strings. So,

you can understand that this actually equivalent to writing 0 or 1 plus so this is same as

this expression. Then the next one say this one so, this expression says 0 followed by 0

or 1 star and followed by 0.

So, if we try to understand the meaning of this particular regular expression. So, this part

means 0 or more occurrence of the characters 0 and 1, but the string must start with a 0

and end with a 0. So, the strings are having at least a length of 2 and it is starting with a 0

and ending with a 0. So, all binary strings of length at least 2 starting and ending with 0’s

are valid strings for this particular regular expression. Then the next one it is very tricky

it says that 0 or 1 start 0 then the next three characters can be 0 or 1. So, all strings where

the, which are having at least three characters in which the third last character is always

0. So, it is not three character so, it is at least four characters so, this is lightly wrong.

So, this is at least four character in which the fourth last character, fourth last character is

always 0. So, I can have a string like 0 0 1 0 0 something like that 1 and then this is a 0

and then I can have three more character. So, it maybe 1 0 1 for example so, this 1 will

match with this part this 0 will match with this part, then this 1 will match with this part

this 0 matches with this 0. And then remaining part so this one this entire thing sorry up

to this one, up to this one so this will match with the 1st part. So, this way I can have this

particular  regular  expression  which  corresponds  to  all  binary  strings  of  at  least  four

characters in which the fourth last character is always 0. Then the next regular expression

it is 0 star 1 0 star 1 0 star 1 0 star. .



So, it says that there can be any number of 0’s, but can be exactly three 1’s in the string.

So, for matching I must have 1 1 1 at the some places and in between I can have any

number of 0’s. So, I have three 1’s 1 1 and 1 and in between I can have. So, may be at

this phase I have got 2 0’s at this place I have 4 0’s after this I have got quite a few 0’s

so, like that.

So, any such string where I have got exactly three 1’s will match with this particular

regular expression. So, this way depending upon the language that we are talking about

the word in it so, we can frame the corresponding regular expression. So, naturally so

these  are  these  examples  are  it  are  a  bit  synthetic.  So,  if  we are  looking  for  some

programming  language  then  we  have  to  see  like  what  are  the  valid  words  in  that

language and accordingly we have to define the regular expression.

(Refer Slide Time: 10:05)

So, next we will look into another example say the set of floating point numbers. So,

floating  point number they have got several  parts  in  it  first  there is  a  symbol.  So,  a

number may be say a number may be say 5.23 into 10 to the power say 25 something

like this. So, this is normally written as 5.23 E 25; now there can be signs also like at the

beginning I can have a sign here that signs so, number may be positive or negative so, it

may  be  plus  or  minus.  Similarly  this  power  so,  it  can  also  be  plus  or  minus  so,

accordingly we define the regular expression the first part is defining, this first part is

defining the first sign.



So, I start with the sign so, this sign part this plus or minus. So, is it is captured by this

plus minus or epsilon. So, epsilon means there is no sign that is specified so it is taken as

a plus number. Then the next part so, there is a decimal point and before decimal we

have got some portion. So, here I have got a single digit so, that is digit, but it is not

mandatory that there should be a single digit the number may be say 56 point something

57. So, this 56 will be captured by digit followed by digit star 2 digit and then this dot

character is there. So, this dot appears and after that I can have the fractional part of the

expression. So, this is digit followed by digit star or epsilon so, fractional part may or

may not be there.

So, it can be that I may have say I may have minus 5 E 25 so, it may be there. So, at that

point I do not have after 5 any digit. So, there is no fractional part or the number may be

5 minus 5.25 E 27. So, that way this 0.25 has to be captured. So, 0.25 will be captured by

this part and here nothing is there so, that is captured by the epsilon part. So, this is there

then the E character must be there the 10 to the power that exponent part.  So, the E

character  must  be  there  so that  E  is  there  then  after  that  this  exponent  may have  a

signature may have a sign or may not have a sign. So, if there is a sign so, it may be plus

or minus if there is no sign it is captured by this epsilon followed by again number. So,

there must be at least 1 digit or there can be multiple digits. So, this whole thing can be

there or this E part may be totally absent.

I may also like to represent a number like 5.45 without any exponentiation part this is a

10 power part. So, this part may be totally absent so, that is captured by this epsilon. So,

this way this entire expression is taking care of the situation that set of floating point

numbers in some programming language so, it may be captured by this particular regular

expressions. So, you can formulate other regular expressions depending upon the words

that are allowed in the language and accordingly come up with the recognizer for them.



(Refer Slide Time: 13:39)

Now, how do you recognize that tokens? So, starting point is the language grammar to

understand the token. So, what are the tokens in the language so, that for that we need to

look into the grammar of the language. For example, this is some hypothetical language

where we have got this if then else statement.

So, this statement so, we will see later when we go to the parser chapter. So, this is this

particular some words which are not some words in the programming language so, they

will called non terminal symbols. So, this non terminal statement it is producing this

terminals involve if followed by some expression then there terminal symbol then and

then another statement.

So, if expression then statement out of this if and then they are tokens of the language

because they are some they correspond to some valid pattern that we have in our valid

(Refer Time: 14:44) that we have in the program that we have that we take as input.

Similarly,  if  in  the  second  one  if  then  and else  they  are  the  three  patterns  that  are

accordingly I should have corresponding tokens and or epsilon. So, statement may be if

expression then statement or if expression then statement else statement or epsilon.

Similarly,  an  expression  so  I  expect  a  conditional  expression  for  the  if  then  else

statement. So, this is at some term followed by some relational operator and another term

or it may be a simple term where term is actually an identifier or it is a number. So, I can

have a statement like if a greater than b then some statement maybe x equal to y plus z



else x equal to y minus z. So, here this if will correspond to this token this (Refer Time:

15:45) in the input text file I have got these thing. So, this particular input stream portion

so, they will give me the token if similarly this part will be reduced expression and how

is it reduced.

So, you see that this is coming as term relational operators is this greater than and this b

will be term.  And this term will be represented by the identifier a and the second time

will be represented by the identifier b. So, this will be more clear when you go to the

parser chapter, but essentially what you want to emphasize at this point is to identify the

tokens of the language. So, we have to start with the grammar of the language and then

from there we can see like what are the important tokens that can come and accordingly

we can proceed.

(Refer Slide Time: 16:35)

So, the next step is to formalize the patterns. So, what are the pattern like we have to give

the definition, like digit is anything a range 0 to 9 the characteristic characters 0 to 9. So,

they form a digit then we can put another definition digits which is digit plus that is 1 or

more occurrence of digit.

Then number is defined as the digit it should start it should it must have at least 1 digit

and then dot digits, digits and question mark. So, digits and question marks so, this part

we will mean that 0 or more occurrence of digits so, it may be 5.9. So, in that case this

point dot digits so, they will match with this part and sometimes I may write simply as 5.



So, there is a integer number so, there is no fractional part. So, this question mark will

mean  0  or  1  occurrence  of  digit.  And  after  that  I  can  have  I  will  have  E  the

exponentiation then there may be a question mark and this plus minus. So, occurrence of

plus symbol or minus symbol and then digits so, this would be digits so, I can have more

digits there.

So, this way I can actually this should be capital D capital digits ok. So, this should be

so, this way I can we have already explain the floating point number so, on the same line

this  number  maybe  define.  Similarly  the  letter  so,  we  have  got  the  A to  Z  capital

uppercase letters A to Z then lowercase letters a to z and the underscore character. Then

an identifier when you are defining so, it is letter followed by letter or digit star. Then

this if is another definition which is actually the characters i followed by character f

appearing on the input stream. Then I am defining another definition then so, which is

the characters string t h e n this character. So, this way I can define this thing then say

relational operator. So, I can have less then greater than less or equal greater or equal,

equal not equal like that so, we can define the relational operators.

We also need to handle whitespaces. So, whitespace how do you define a whitespace?

So, blank tab and new line character. So, these are the three whitespace characters we

have now there can be 1 or more occurrence of such whitespaces. Somebody may write

like say blank then may be put in 2 tabs and then a newline character so, that can happen.

So, this whole thing will be identified as a single whitespace and may be the lexicon

analysis tool will remove all this whitespaces from program. So, that can be done. So,

this whitespace so, this whitespace is another regular definition which is given by this

regular expression blank or tab or new line plus so any number of them. So, this way we

can define the patterns and the corresponding tokens.



(Refer Slide Time: 19:55)

Now, once we have done that so, we can you take help of some transition diagrams to

identify  the  tokens.  So,  for  example,  if  I  am looking  for  the  relational  operator  the

definition was like this less than greater than less or equal greater or equal, equal and not

equal. So, accordingly I can say that if this is my if the lexical analysis tool it starts at

state 0 of these finite automata. Then or getting the less than symbol it will come to state

1 and then if it after that in the state 1 if it sees as next input symbolize equality then it

comes to a state 2 which is a final state and identified by 2 concentric cycles and then it

will return the token relop with the value or the attribute as LE. So, LE maybe some less

or equal so, there may be some value or some constant define for the symbol for this

symbol LE.

But, whatever it is so, conceptually we can say that the token delay relop. So, it can have

values like LE NE LT etcetera so, it is returning the value LE. Similarly, after coming to

state 1 if it is finds is greater than symbol then it can say that it is relational operator not

equal to. So, if it is any other symbol so, it is less then that so, it will return the relational

operator LT. Similarly, at state 0 if it finds equality so, it will return relational operator

EQ and then it is greater than equal to then it will return the relational operator greater

there was it will return the relational operator greater or equal and here in state 8 it will

return relational operator token with value greater.

 (Refer Slide Time: 21:59)



So, in this way you can define other such transition diagram also like this is the transition

diagram corresponding to the reserved words and or identifiers. So, this is the starting

state then it is coming to this letter followed by letter or digit. So, here and then if it is

not matching with if it is not matching here then it will anything else. So, it will go to

this other states. So, if it as long as it gets letter or digit fitted with looping there when it

gets some other symbol it comes to the state eleven and it returns get token and install id.

So, this get token will get the corresponding token. So, depending upon this ID so, this

will be returning the ID and this install ID. So, it will install the identifier into the symbol

table and that symbol table off set will be returned to the partial. So, this way I can say

that this transition diagram for reserved words and identifiers can be developed. So, we

can use this in the lexicon analysis phase for defining these keywords.



(Refer Slide Time: 23:09)

Then we can have unsigned numbers. So, this is another possibility like from the start if

you if you come to state 12 and if you get a digit there so, it comes to. So, it is digit then

digit start then dot so, this number definition that we have seen previously so, it is for

that purpose. Now, it may get only a single digit and that may be the end. So, it comes to

state 20 it may be that from the beginning. So, you do not have any digits immediately

starts with 10 power that is E. So, a straightway come to here come here. So, this way we

can  represent  the  valid  unsigned  numbers  in  the  language  in  terms  of  a  transition

diagram.  So,  regular  expression  is  a  definition  for  the  tokens  that  we  have  in  the

language.

Then their implementation can be in terms of transition diagram and once you have got a

transition diagram. So, you can realize it by means of some program or you can realize it

by means of some automata.  So, this is some sort  of automata because I have got a

number of states and transitions between them. So, that defines 1 automata so, we can us

that symbol that technique.



(Refer Slide Time: 24:29)

Next for white space so, it is delimiter followed by any number of delimiters and any

other symbol it will come to state 24 where it will return the token delimiter so, this or

white space. So, this is this is what this delimiter is this whitespace transition diagram

may be developed like this. We can so, in this way so, these are a few examples only so,

for depending on the programming language that we are handling.

(Refer Slide Time: 25:05)

So, we have to see: what are the different regular definitions and accordingly we have to

do it. Now, architecture of a transition diagram base lexical analyzer tool so, this is just a



just a typical example ok. So, how we will how can we develop a corresponding code.

So, this token get relop so, this is the relational operator for the relational operator part

so, it will do it like this. So, it will first it will return a new relational operator as the

token. So, while so, now, it will read the characters until a return or failure occurs.

And depending upon the state so, it is case 0. So, this relation actually we need to consult

this relational operator table, a relational operator transition diagram so this one. So, you

see that I so, it is depending upon the states it is 1 or if it is 1 means I have seen this less

than symbol and then we are writing it like this sorry case 0 case, 0 means we have not

seen anything now that is in state 0 so, that is in state 0 ok.

So, we are not seen anything so, we are correctly in state 0. So, the possibilities I will see

a less than symbol, equality symbol or greater than symbol. Accordingly you can write

this code the case 0 so, get the next character if the next character is also less than then it

come it comes to state 1. And if it is equal to then it goes to state 5 it is greater than goes

to state 6 otherwise it is a failure. So, lexeme is not a relational operator; similarly at

state 1 also you can write a few, write a few rules here. So, like here so, state 1 so, I can

see the equality greater than other symbols so, like that.

So, similarly this sometimes will be requiring to come back. So, state 8 it will be doing a

retract because state 8 is here. So, you are getting something else so, you need to come

back so it is not there not a relational operator so you need to come back so, here so, this

is attribute is GT. And so, it will return the token relational operator token; this is a based

on  the  transition  diagram  you  can  write  a  piece  of  code  which  will  correspond  to

realization of the transition diagram.



(Refer Slide Time: 27:35)

Next we will look into something called finite automata because transition diagram is a it

is a way of doing the thing, but it may not be very much suitable very much powerful in

terms of the representation.  So, we would like to  represent  them by means of  finite

automata. So, regular expression is the specification for the token and finite automata is

an implementation of the token.

So, a finite automata it has got an input alphabet set sigma a set of states S a start state n

a set of accepting states F which is a subset of S and a set of transitions state to state on

some input value. So, it will if it is currently at state S 1 so, if you have a transition from

state S 1 to state S 2 and it is on some input symbol a then it can go from state S 1 to

state S 2 by consuming this input symbol a. So, what happens is that this automata is

specified by means of a diagram like this where starting with the start state I have got all

this transitions and there is an input stream ok. So, at present maybe the input pointer is

somewhere here.

So, if you are at the state S 1 and the current input symbol is a then the input pointer is

advanced to the next position and the current state of the system becomes S 2. So, it

consumes the next input and proceeds to the next states it transits to the next possible

states. So, this is the idea of finite automata. So, you can use these finite automata to

realize this lexical analysis tool for designing the lexical analyzer.


