
Compiler Design
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 08
Lexical Analysis (Contd.)

So, if errors are there. So, we can have we can think about some error recovery policy.

(Refer Slide Time: 00:19)

So, the problem with the lexical error is that, the input string input file that we have an

input stream. So, there is some problem in the input stream itself. So, if you are thinking

about correction. So, we have to correct the input stream and if there is no look back ok.

So, lexical analysis tool so it is scanning the input file from one side and going towards

other side. So, it has already scanned some portion which needs to be corrected.

So, the lexical analysis tool has to undo some operations that it has already done for

correcting the text or doing some recovery. So, one possible recovery mode is the panic

mode of recovery. So, panic mode of recovery here it is said that a successive characters

are ignored until we reach to a well formed token. So, some tokens are very unique for

example, semicolon is a unique token, then say if you are considering its a C

programming language then this symbols like open brace and closing brace so they are

unique.

Similarly, if we get a closing parenthesis. So, that may be meaning end of an expression.

So, like that certain tokens are certain character sequences are unique. So, if you find that

there is some error so when the when it was going through this part. So, it can go on, it

can go on ignoring all these characters still it gets a closing brace because after the

closing brace it is I can assume that from this point a new correct token will start.

So, in a panic mode of recovery. So, it will ignore all these tokens and it will be starting a

phrase with the next synchronizing token so or synchronizing symbol. So, this is good

because I can the lexical analysis tool. So, it can come out of the error and continue

processing of the remaining one. So, another possibility is that delete one character from

the remaining input.

So, this is just one more one possibility that we you delete one character with the

expectation that the from the next character I will get a valid one, as I was telling that the

example that I took previously that its a 2 r. So, after getting 2 so, I was expecting. So, to

return this as a number I expect that at this place I should have a blank or some operator

say plus or multiplication some operator.

So, what I do? I just ignore the next character. So, maybe after r after this r there is a

blank to if I delete this r when I will get this to as a valid token. So, this way I can delete

one character from the remaining input and accordingly I can make a valid word out of

the, whatever I have scanned or I can insert the missing character into the remaining

input.

So, here also the same to same example like it is 2 b then I can insert one blank in

between in that case this you will be returned as we have some number and after that we

will b returned as an identifier. That will solve the problem for the lexical analysis tool.

Now whether this is correct or not that is not the concern because it may or may not be

correct, but the lexical analysis tool it got stuck at that this point.

So, it was unable to proceed further. So, if you do this then it will be able to proceed with

the remaining input and maybe it will do something, maybe it will flash some error

message and the user will correct it.

But if it can give a large number of error reported to the user otherwise it will stop at that

point and it will come out from this compilation phase telling that there is a wrong, there

is an invalid character at this point patriotic only this much that is not there. Sometimes

we replace a character by another character. So, that is also another recovery policy. So,

if you so, there may be alternative words that are available. So, maybe one in some

character in some words only one character is wrong.

So, what it does is that it modifiers that word completely with a valid word. So, normally

for this purpose we have got this text processing software which do this thing. So, they

have got some dictionary of words and it whenever it finds that some word is coming

which is not matching. So, will try to replace it by some valid word.

So, it will try to replace a character by another character or it can transpose to a two

adjacent characters. So, two characters suppose that I have got this if I. So, if I do a

transpose for these two characters will change the interchange their position and it will

give me i f similarly. So, for while I am trying to write the qr then maybe I have actually

written tehn and then if I transpose these two characters then it will become t h e n this

type of corrections can be done by the error recovery phase.

So, whether so how many of them will be done and whether it is done always. So, it is up

to the compiler designer. So, language design will not talk anything about error recovery.

So, and it has got nothing to do with code generation also because if there is a mistake in

my program. So, that is the mistake that is an error.

So, it is not generate the code, but the compiler designer I can think about this type of

possible errors and flash good number of error messages good amount of error messages

so, that the program can be corrected by the user. So, it is up to the user to it is up to the

compiler designer to identify possible or visualize possible mistakes that the user may do

and accordingly come up with some policy for the recovery.

(Refer Slide Time: 06:37)

Sometimes we need to do some buffering, some lexical analyzer it needs to look at the

some symbols to decide about the token to return.

So, typical example maybe this symbols like in a C programming language we have got

the symbol say minus then equality less than. So, we have to look head and then only

you can see you can do something written the proper token for example, example if you

have got say x minus y.

So, at this point if the input, if your input point are somewhere here you have got a this

minus symbol should I return the token minus ok. So, it is not it may or may not be

correct because it may be the user as written x minus minus plus y, user has actually

written this and you are at this point now. Now getting the single minus you should not

written a minus the lexical analysis tool it should look I head see the next minus and then

this blank and then it should say that this minus might have. So, this is basically auto

decrement mode similarly this equality looking into the looking into one equality. So,

whether it is correct or not that is the question, because I may have two equalities so, x

equal to y and x equal to equal to y.

So, both are valid in the C programming language and if the user has written like this

then if you are returning that it is an equality operator. So, that is wrong. So, it has to you

have to say that it is a equal check operated by see you both these equality symbols you

should return a single token which is the equality check. So, this way this lexical analysis

tool its, it needs to look ahead similarly is less than we have got many variants like less

than is there less than equal to is there then we have got this left shift.

So, all these are there in the programming language. So, depending upon the

programming language you may need to look ahead for the next few characters to know

what is the valid token and in general the policy followed by the lexical analyzer is that it

returns the maximally matched token ok. So, it will written the maximally matched

token. So, whichever token matches with the next maximum number of characters so,

that token will be returned a very nice example that we have this is the Fortran language.

So, Fortran language it has it has got a loop constructs.

(Refer Slide Time: 09:20)

So, where the structure is like this that you look. So, DO then a label and then we have

got some variable I equal to say 1 comma 25 and then you write the body of the loop and

then somewhere at this point. So, you have this label and here you say continue here. So,

means that this body of the loop will be repeated, first with the I is equal to 1 then I equal

to 2 etcetera up to I equal to 25. So, this is the, this is a valid so this is some example that

we are doing.

So, actually the user wanted to write in this case DO 5 I equal to 1 comma 25, but by

mistake this 1 comma 25 has been written as 1 dot 25. So, this 1 dot 25 so this is a real

number which is allowed in Fortran language and Fortran language it does not does not

recognize this blanks in between the symbols, it just ignore this blank. So, this entire DO

5 blank b I so, this whole thing is reduced to a variable DO 5 I. So, it thinks that this DO

5 I is a single variable that is equal to 1.25. So, this is this is the interpretation of this

particular statement.

So, until and unless we have seen you so whether this a comma or a full stop or dot. So,

you cannot know whether you should written DO as a loop token or this DO 5 I as a

identifier as an identifier. So, you see the level of complexity that this lexical analysis

tool is going to face. So, it has to look ahead quite some, quite a few some characters to

see whether a comma appears after the first number after the equality symbol. If it is not

then it is the whole that the entire left hand side will be reduced to a variable name where

as if it is a comma in that case it has to written only the do part and the input pointer

should be pointing to the next character here; where as in this case if it is 1.25 then the

input pointer will come to this point.

So, this type of things are there so, it designing lexical analysis part is not that symbol

apparently it seems it is quite simple I will just do a simple string match and where ever I

get the match I will written it. So, that is not the case because programming language are

often very critical in nature. So, and that is up to the language designer they have done it

like that.

So, we have to follow that. So, sometimes you need to introduce a two buffer scheme to

handle large look ahead safely so that when one buffer pointer is advancing through one

buffer, the other buffer holds the next symbol next input string. So, that way there is no

possibility of over flow, sometimes we need to save some amount of buffer information

on to some other so other buffer so that these symbols are not lost in the process any way

so, they are all implemented in the legs tool. So, while designing the compiler we do not

really feel that we have to do so complex things, but the legs tool that is there. So, it

takes care of that.

(Refer Slide Time: 12:58)

Next we will come a very important part of this lexical analysis phase which is known as

specification of tokens, like how do you tell what are the valid tokens in your

programming language? So, any language or not only programming language any

language. So, as I said any language has got an alphabet which defines the characters or

symbols that the language can help.

So, if we are the, if we are talking about say the set of sentence is over binary symbols

then my alphabet set is often represented as sigma. So, this has got 0 and 1 unit only two

symbol, then if I say that we have got a say the English language text then all the

symbols a, b up to z then this capital A, B up to Z then we have got these numbers 0, 1

up to 9.

Then all the symbols that I that I have in the English language so they will come as a

alphabet set for the language. So, from this alphabet set we have to define some rules by

which I will tell what are the valid strings or valid words for the language. So, here we

will be using a particular structure known as regular expression to formalize the

specification of tokens ok. So, we will be learning about regular expression for that

purpose. So, regular expressions are means for specified regular languages. So, I will

come to this regular language parts slightly later, when we go to the parser phase parsing

phase and we will talk about the grammars and all for the time being we take it as

accepted that the regular expressions can specify regular languages.

So, what is a regular language we learn it later. So, a typical example of regular

expression is like this letter then with in bracket letter then vertical bar digit bracket close

star. So, where this letter is a set of symbols so, any letter maybe I can say the letter set

is, the set letter is all the lowercase letter that we have in the English language then digit.

So, this is a set of symbols 0, 1, 2 up to say 9.

So, these are digits. So, it says that this whole thing is a regular expression which must

start with a letter and after the letter I can have a letter or a digit and this letter or digit

can occur any number of times. So, this star at the end means that with whatever portion

on which we have applied this star that can appear any number of time.

So, if I if I like write a b so that is a valid that is a valid word for this particular regular

expression then I can have say a 2 b or a 22 or a 3. So, a all a s anything that we can

write like this, but anything that star does not start with a letter is not valid, like if I ask

whether this two a is a valid word as per this rule or not. So, it will say no. So, this not

correct, but all these are correct, all these are correct, but this is not. So, so we have got

this particular rule where this. So, this is a regular expression this whole thing is called a

regular expression.

So, time back I was telling how are you going to specify the patterns that are allowed for

the programming language. So, this is actually the, this is done by means of the regular

expression. So, you have to define the set of regular expressions for your language that

will define all words that you have in your language.

So, each regular expression is a pattern that specifies the form of string for the language.

So, the type of strings which will correspond to this regular expression so that will be

identified by this regular expression. So, every token now you can understand that, each

token has got a corresponding regular expression. So, for example, I have previously I

talked about that token if ok.

(Refer Slide Time: 17:34)

So, these that is the corresponding regular expression is simply i f this is the

corresponding regular expression similarly if I have got say comparison operator. So, the

comparison, this particular token.

So, the corresponding the regular expression is equality or greater than or less than or

greater equal or less equal. So, this way you can specify the token. So, the corresponding

regular expression. So, each token will have got a corresponding regular expression and

the task of the lexical analysis tool is to see which of these regular expressions

maximally match the next part of the input. So, if this is your entire, if this is the entire

input file that you have may be at present the lexical analysis tool is at this particular line

and in this particular character. Now, if you ask when the parser asks it for the next word

or next token what it does it scans from here and sees which token matches maximally

ok.

So, we it finds the maximal match. So, may be the maximal match up to this much entire

thing maximally matches with some token then this entire thing will be. So, that is

checked by the regular expression. So, this entire part matches the corresponding token

will be retuned. So, it is the task of the lexical analysis tool to see which token matches

or which regular expression matches maximally from the given set of regular expressions

and return the corresponding token to the parser. So, this is how this lexical analysis tool

is going to what.

(Refer Slide Time: 19:28)

So, we start with the definition of regular expression. So, epsilon so it is a regular

expression denoting the language L of epsilon equal to epsilon containing only the empty

string. So, throughout our discussion. So, this epsilon will be these will be calling as this

a special symbol. So, will be call this as null ok. So, wherever you find this epsilon you

take it as null no is a wide sort of thing you can say.

So, this is special regular expression so if your language. So, ai if your language contains

only the null string that is very regimentally language that has got only one string which

is a null string. So, that is empty string. So, that is represented by the regular expression

epsilon, then if you have got the symbol a small in the alphabet set sigma then a itself is

regular expression corresponding to the language that has got the string which contains

only a single a.

So, if my sigma in the alphabet set I may have all this symbols say a b and c fine then L

of a L of a means it is talking about the language that has got the alphabet a only it does

not have the other alphabets b and c. So, naturally so L of a is only the, it has got only a

only a single valid string in the language which is a single a similarly L of b. So, each

symbol that you have in the alphabet set constitutes a language consisting of a single

occurrence of that symbol ok. So, L of b is a single b L of c is a single c.

So, it defines those language that contains the single b or single c in it now comes

combination of two or more regular expressions. So, if r and s are two regular expression

with corresponding languages L of r and L of s then r vertical bar s is a regular

expression denoting the language L r union L s. So, when I say L r so this is L r is

nothing, but set of strings, set of strings in the language in the language with r as regular

expression. So, that is L r. So, this is a set it defines the all the strings that are possible in

the language identified by the regular expression r.

So,when I say r vertical bar s or we read it as r or s. So, if L r and L s are two languages

then this r vertical bar s it will correspond to the language L r union L s. So, L of r or s is

nothing, but L of r union L of s. So, any string which belongs to the language L r also

belongs to the language L r or s. Similarly any string which belongs to the, which

belongs to the language L s also belongs to the language L r or s. Next we look in to the

next rule it says that if r r s is a regular expression so r s, r is a regular expression and s is

regular expression or they are occurring side by side.

(Refer Slide Time: 23:21)

So, for example, a is a regular expression and b is a regular expression or I can say a b is

a regular expression and b c is another regular expression. So, that way may be my r

equal to a b and s equal to B c in that case r s is this one a b B c. So, if r s is a regular

expression then that will denote the language L r followed by L s.

So, any language any string that is created by taking one string from L of r and another

string from L of s and concatenating the second string to the first string. So, you have got

say one language L of r suppose it has got the language, it has got the strings a, a b and a

c and L of s has got the string x and y then L of r s. So, this will have all these, all these

strings like a x, a y, a b x, a b y, a c x and a c y that is you take the first part from the

language L r and second part from the language L s and concatenate the two strings

together. So, what you get is the set of strings that are allowed in this language.

So, if you have constructed individual, individual languages for the regular expression r

and s. So, you can take concatenation of those strings of different languages and tell

them that it is the regular expression for; it is the language for the regular expression r s.

So, this is there then we have this special regular expression r star. So, r star means this

star symbol it means that it is 0 or more occurrences of the regular expression r.

(Refer Slide Time: 25:33)

So, if you have got say L of r, suppose I have got the two strings a and a b then L of r star

L of r star. So, this will have all these all these words all these strings. So, 0 or more

occurrences of this language this language words, if I take 0 occurrences. So, that is the

null. So, epsilon if I take one occurrence. So, I can get a and a b if I take two occurrences

then I can get a a or a a b similarly a b, a b, a b a. So, this way we can think about

different words ok, different strings this set is infinite because this is 0 or more

occurrence you can just go on augmenting taking more and more strings and connecting

them together. In different number of times I have taken only two times, you can take it

any number of times because this is a star.

So, this r star is a regular expression denoting L r whole star, the set containing 0 or more

occurrences of the string of L r ok. So, and each whenever we have taking the string you

are free to choose any string. So, that way they can be concatenated in arbitrary fashion.

So, this is a very powerful operator that we have ok, unlike this or said say consecutive

occurrence. So, this star is a 0 or more occurrences of the symbol then with in bracket r

is a regular expression which corresponding to the language L of r so it is nothing new.

So, this r the regular expression r has got the language L of r. So, if you put it with in

bracket also we do not get anything new, we get the same language L r. So, this way the

regular expression, the regular expressions are defined. So, this is definition of regular

expression.

(Refer Slide Time: 27:45)

So, here is some example suppose. So, we have got this thing like regular definitions. So,

definition 1 will give me some regular expression d 1, definition 2 will give me some

regular expression d 2 definition n will give me regular expression r n. So, one such

definition is the letter underscore so that means, I am talking about. So, this is a

definition which says that all these characters can appear A B capital A capital B upto

capitals Z then small a small b up to small z and this underscore. Then this digit is a

definition it is 0 1 up to 9 and id is another definition.

So, these are these are the specified in terms of regular expression only, you see this

whole thing is a regular expression, similarly this whole thing is a regular expression.

Now I am use these two definitions to define an id how am I defining letter underscore

followed by letter underscore or digit and this star. So, I can start; that means, for a valid

id for any character string to be called a valid id. So, it may I start with letter or it may

start with underscore character.

So, maybe so I can write, I can have a character string like this underscore a b. So, that is

valid similarly I can have like a underscore b 2 underscore 3. So, this is also valid. So,

they are all id they will all be identified as id. So, this can be done. So, we can have this

type of regular expressions formulated by first writing a few definitions and then writing

the more complex one, building the more completes one based on the simpler regular

expressions.

So, so these are called regular definitions. So, you can we use these definitions to build

more and more complex set and. So, you can understand that anything so this is not valid

like you cannot select 2 1 underscore 5. So, that is not a valid one or 2 underscore a that

is not valid one because it says that it should start with the letter or underscore character,

but here for these two cases that is not true so they are not valid.

Whereas these cases they are fine and they can occur any number of time. So, in the first

character, even this is going to be a valid string. So, all underscore and this can go up to

infinite. So, this is also valid because I am starting with an underscore that follow, that

satisfies the first part of the definition and then I am starting with the then I am doing

with it is the second underscore and that is satisfying any number of time. So, this also a

valid id in the as per in this particular language.

