
Compiler Design
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 51
Intermediate Code Generation (Contd.)

The next high level representation that we will be looking into is known as directed

acyclic graph.

(Refer Slide Time: 00:21)

So, the previous representation that we had that was a tree. So, syntax tree and now this

is a graph and you know that as a data structure the difference between tree and graph is

that, in case of tree every node has got a unique parent node. And one so, it so that parent

is only one every node has got at most one parent the root node does not have any parent,

but otherwise like if this is a tree. So, the tree is always like this.

So, every node will have one parent accepting the root node which does not have any

parent, but it is never the situation that one node has got two parents. So, that if that thing

occurs then this is a graph and we call it a directed acyclic graph where this ages are

directed so, from root node. So, it has got children so left and right children. Similarly

from here so this is there. So, and then at some time so, if it is a graph then this type of

ages will also be coming and it is not cyclic.

So, this is an acyclic graph. So, we do not have a situation where say like this. So, you do

not have a situation like this so, where it creates a cyclic so, this is not there. So, this type

of representation directed acyclic graph representation so, that is also used in many such

intermediate language. So, it is similar to syntax tree in which common sub expressions

they are represented by a single node.

(Refer Slide Time: 02:05)

So, like in the previous example that we had looked into so, it was like this that if x

greater than 0, then x equal to 3 into y plus 1 else y equal to y plus 1. Now in this case

so, this y plus 1 part so this expression part so this is becoming common ok. So, if you

look into the parts tree so, in different portions of the parts tree I was x I was evaluating

this y plus 1. So, one in the then part and another in the else part, so, in both the parts so

we were evaluating that. So, in case of a directed acyclic graph; so, what is done is this

common express common sub expression. So, they will be represented by a single node.

So, we do not do I do not keep a separate point a like this. So, this also points to this one

only. So, that way it is helping like say here y plus 1. So, this node computes y plus 1 so,

it was used in this expression also that 3 into y plus 1 and it is used in this statement also

like y equal to y plus 1. So, in both assignment and both the assignment statements, so,

this y plus 1 expression was common and that is taken out.

So, that gives rise to a graph representation and we will be we can go for a directed

acyclic graph representation for that. So, that is one type of representation.

(Refer Slide Time: 03:33)

Then there is another high level representation which is known as P code. So, this is used

for stack based virtual machines. So, what is a stack based virtual machines? So, virtual

machine means the machine does not exist in actual ok. So, this is a conceptual machine

you can say may be there are some machines which are built around this concept, but it

is, but the basic idea is that this is a stack based machine.

So, like if you look into this computer architecture, then there are different types of

architectures that we can think about or we can come across one is known as

accumulator based architecture. So, in accumulator based architecture what happens is

that all the arithmetic logic operations that you are doing one of the operand and the

result.

So, that is always the accumulator like we have got instructions like add B which in

mean that the accumulator A, we will get A plus B ok. So, this accumulator becomes a

very important register and that way if all the operations arithmetic logic operations the

accumulated is a part of it.

On the other hand this stack based machines, so, it will assume that we do not have any

such registers or things like that. Rather there is a stack and whenever any operation is

needed to be done. So, it will assume that the operands are always available in the stack.

So, any operation to be done, so, it will be taking out 2 top most entries do the operation

and then it will be pushing the result back onto the stack. So, it is like this that suppose I

have got say there this one say x equal to y into z.

Then what it will do it will have this it will be push putting this y and z into the stack and

then when this operation has to be done so, it will take out this z and y from the stack.

So, you can say that it is as if it will be doing 2 pop operations to get this y and z, then

after that it will do a multiplication operation or in some sense in some cases you can say

that the multiplication operator automatically it will pop out 2 topmost entries from the

stack and do the multiplication on them. And then it will put the result back on to the

stack. So, it may be like this that is suppose I am doing this operation.

So, multiplying two expressions E 1 and E 2 sub expressions E 1 and E 2. So, somehow

we have already have got the code for evaluating E 1 code for evaluating E 2 and then I

say multiply. So, when it is there so that will mean that the operands after finishing this

code to evaluate E 1 the final result is already put into the stack. So, the final result of E

1 is already available in the stack, then we have got the code to evaluate E 2. So, after

executing this is the final result will be available in the stack.

Then it comes to this MULT for a MULT instruction so, it will take out these two values

to the multiplication and put the result back onto the stack or if you are looking into a

more detailed version ok. So, that then it will look like this there is a code to evaluate E 1

code to evaluate E 2, then r naught equal to pop. So, that is why they are the top most

entries popped out and it is kept in r naught then r 1 equal to pop. So, that is also taken

out of the stack. And then in r 2 we do this multiplication r 0s into r 1 and then we do

push r 2. So, result is pushed into the stack so, this is called P code type implementation.

So, this is a high level representation so, where it is close to the stack based

representation, but the difficulty that we have is definitely if the target is a accumulator

based architecture, then converting it into target code becomes difficult so, that is there,

but in still this is one of the some this is a technique for doing this code generation ok.

(Refer Slide Time: 07:53)

So, next will be looking into the low level representations which are very common in this

intermediate code; intermediary code generation which is known as three address code.

In three address code the name came the name three address came from the fact that

almost all the instructions.

So, they will have three addresses three address components in it ok, it will have three

address components in it like most of the instructions are of the form x equal to y of z.

So, you need to tell now what is the operand y and what is so, you need to tell the this

operands x y and z. And since they are identifiers or variables or numbers so, I will have

three addresses for x y and z. So, that is why the name is for three address code and only

one operated is permitted on the right side.

So, you cannot have an instruction like x equal to y star z plus P. So, that is not possible

because on the right hand side we can have only one operator. So, if you have to write

like this then first of all we have to write like x equal to say t 1 equal to y in to z and then

write x equal to t 1 plus P. So, like here so you see that we have got an example y into z

plus w into a, first t 1 equal to y into z t 2 equal to w into a, then x equal to t 1 plus t 2.

So, it is a very refined form of the complex expressions that you may have in the source

language program, but at the same time which is not losing the meaning of the source

language program ok.

So, everything is maintained but it is more elaborate and this individual instructions that

we are having or the individual statements that we are having here so they are very

simple. Due to it simplicity it offers better flexibility in terms of target code generation

and code optimization. So, you see that most of the underlying processors they will

support this three address format ok. So, in some machines what may happen is that your

we have got only two operand instructions some machines, you can have three operand

instructions, but whatever it is so, it is very easy to convert this statements into that form.

So, that is why this is one of the most common formats in which these three address code

is generated by the compilers. So, will be also discussing with this three address code

based in policy.

(Refer Slide Time: 10:29)

Now, statements in three address code. So, they are having this intermediate language

that uses three address code, usually have these types of statements assignment jump

address and pointer assignments procedure call return. And there is another category

called miscellaneous. Now you see that almost all the major programming language

constructs so, they are taken into consideration here.

So, we have got the assignment statement jump for go to. So, address pointer arithmetic

is there and there is a the if then statement is also there. So, we will see that will come

under the miscellaneous category.

(Refer Slide Time: 11:15)

Assignment statement which forms the hard core part of this three address instructions.

So, there are three types of assignment statements; one is like x equal to y of z. So,

operator being a binary operator sometimes, we can have an unary operator say like there

can be an operator like if x and y are Boolean variables.

Then I can have x equal to not of y ok. So, in that case so this not is an unitary operator

so it takes only operand. Whereas, if I say x equal to y and z then this and is a binary

operator like this or so, in arithmetic domain, so, we have got this unary minus x equal to

minus of y, where this minus is a unary minus. Whereas, if I write like x equal to y minus

z then these minus is a binary minus though so, they are meanings are totally different.

So, though both of them appear to be minus symbol, but they are different. So, in if you

looking into any real compiler design task, then you will find that it is given to the lexica

and analyzer to differentiate between these two situation in some one case it returns

unary minus as a token in the second case it returns minus as a token.

So, that way sometimes it is a bit confusing and the third type of assignment is x equal to

y. So, there is no operation in the value of y is assign to x, for all operators in the source

language they are should be a counter part in the intermediate language. So, that is mast

because otherwise you will not be able to generate all you will not be able to have easy

code generation into intermediate code. So, you have to think about converting complex

source language operators into simpler operators of this three address code language

three address code. And that is that often brings laws of optimization.

So, that way it is not advisable that we should have a three address code three, this

intermediate language such that the less number of operator less operator said they are

then the source language operators.

(Refer Slide Time: 13:45)

So, once that is said so, will be looking into this operators some more statements of this

three address code one is known as the jump statement. So, we have got this goto L

where L is a level so, you can have so this L is again a hypothetical one because, this is

for this is for just an intermediate representation ok.

So, in the so I can just use any symbol here as L like in a program sorry so, any program

so you can have at this point say go to L so, you go to say L 1 and this L 1 may be a level

here some statement may have L 1 before that so, that will mean that this level is L 1. So,

when it is assumed that when this statement will be executed so, it will be the control

will be coming to L 1. Similarly there can be a go to L 2 and L 2 may be somewhere

here. So, this way so this goto L is a generic go to statement of to the level L. And we

have got this conditional go to, so, if x relational operator y go to L so ok.

So, this is the so, if then else type of statement so, if x relop y go to L. So, if this

statement is there so, I do not need any separate if then else statement for example, if I

tell you like this that if x greater than y, then a equal to b plus c, then say e equal to f

minus g else a equal to b minus c, e equal to f plus g say something like this. Then I can

do it like this that I can I do it so, I can write like this. So, if x greater then y go to L say

L 1. And then here I write like a equal to b plus c e equal to f minus g, then a go to L 2

and this is my L 1.

So, where I write like a equal to b minus c e equal to f plus g and this is my L 2. So, you

see that in this language I do not need the then and else part of the if statement. So, if

then else type of constructs they can be converted into this a if condition goto some level

type of statements. So, that is done very often. So, we will see that this jump statements

can be useful for doing this.

(Refer Slide Time: 16:39)

So, it also supports some array type of structure because array is now so, common in

most in many of the almost all the programming languages. So, if you do not support

array as a basic operation in the three address code, then it becomes very difficult to

generate the corresponding code in the target machine. So, or so it becomes very difficult

for converting the source language array indices to the intermediate code, so, only one

dimensional array is supported.

So, in your source language they are may not be any restriction on the number of

dimensions, but ultimately what is happening is that see your memory on to which you

will be storing the will be storing this array so, that is one dimensional in nature. For

example, if I have got a 2 d array a 100 by 100, then also I will be storing them in this

fashion say a 1 a 1 2 up to say a 100, then a 2 1 so, I will be storing in them in this

fashion ok.

So, I do not need to really have a 2 d representation, because while I am talking about the

target code. So, target code it will be accessing memory only in a one dimensional

fashion. So, even if my target machine supports this array access. So, there is no point

having multidimensional array in the target code, so, that the target code will not support

multidimensional array.

So, this conversion from this multidimensional array access to single dimensional array

access, it is better done at the intermediate code generation phase itself. So, that at the

target code generation stage so, we do not be bothered about this error dimensions and

also. So, there we can concentrate more on other optimizations. So, arrays of higher

dimension so, they are converted to one two one dimensional arrays so, that makes it the

so, this conversion code has to be generated by the compiler.

(Refer Slide Time: 18:53)

So, it will do that conversion and so, I like I can have definitely have a statement in my

source language program like say t equal to say x i j. And then in the three address code I

should have the appropriate code so, that this x i j so this is converted into some one

dimensional array.

And you know that based on the size of these array the dimensions of this array. So, you

can very easily compute the corresponding index at which you have to refer to so, that

can be that is done in fact, it is if the psi, if the array is of dimension say capital M by

capital, then each x axis is it is having say n such entries.

So, this i into N plus j. So, if you go to that so this if you are storing this x ray, in this

fashion 1 1 x 1 1, then x 1 2 in this fashion, then you can do it in this way. So, that way it

will be so, if this is this is not i this is i minus 1 i minus 1 into N plus j.

So, for example if it is 1 1 then i this will be this will come to this first lot. So, if it is 1 2

that will come to the second slot like that. So, that way it will be doing the conversion.

So, any data structure book on this array so, that will discuss on that. So, this arrays of

higher dimension they can be converted to one dimensional array and the compiler has to

embed this code into the three address code that is generated ok.

So, this we will see that it is exactly what is done in the code generation phase ok. So,

this will be done so, this statements to be supported are only one dimensional arrays x

equal to y i or xi equal to y. So, these are the two star type of statement that we need to

support.

(Refer Slide Time: 20:49)

Now, address and pointer assignment. So, this is another very important issue. So, there

is may be a question like whether we should support this pointers or not this address

arithmetic or not, but this is required because many programming languages they support

this address pointers and all.

So, if it is not supported then it will become very difficult to convert those statements

like suppose for example, in c language so you have got this integer pointer int star P and

at some point we have got a statement like a equal to start P. Now, how are you going to

handle the how are you going to write it in terms of some lower level language program,

in which this pointers are not supported it pointers are not supported, it is really it is

almost impossible to write it in the proper with proper flavor.

So, we can always do something so, that it will give you some other representation which

will not be truly a pointer, but something close to there, but you will never get a true

pointer there. And the underlying machine so, most of the underlying processors the

process, they support this type of pointers and all so, they have they support indirect

access. So, at the architectural level pointers are beings supported.

So, the machine code that we are; that we are going to use they are going to support

pointers. So, if the intermediate could does not support pointers, then of course, that is of

no use. So, that is why in intermediate code also we need to support pointers. So,

statements required for pointers are like this that x equal to ampersand y. So, address of y

is assigned to x, then x equal to start y the content of location pointed to by y is assigned

to x and x equal to y so, simpler pointer assignment so, x and y both are pointer variables

so, you write like x equal to y. So, it does not tell anything about this implementing

pointers and all.

So, it may be in some if you are high language supports that. If it supports that pointer

arithmetic in terms of say making x equal to x plus 1 and things like that. So, if this sort

of things are supported then you have to have those features also incorporated into the

three address code.

But for our understanding we assume that our pointers are simple so, we do not have any

pointer arithmetic supported only pointer assignment can be there. So, in that case this

representation is good enough ok. So, if you are in c type of language you have this

pointer arithmetic which is mostly used for accessing arrays using pointers, but that may

not be necessary in some other programming languages.

So, that way we so. For our discussion, so, we will not take this pointer arithmetic into

consideration; we will take them simply as pointer assignment.

(Refer Slide Time: 24:03)

Procedure call or return so, this is of course, important. So, a call to procedure P so, there

are two part in it. So, we have to pass all these parameters so this way the this is the call

for handling for doing this parameter passing. So, this x 1 x 2 up to x n so, we call say

that they are all parameters ok, so, this has to be done.

Now how these parameters will be implemented in the target language, so, that is a

question. So, you do not answer that at this level, but we keep a note that this x 1 x 2 x n

so, they are parameter. So, if we have already seen that in runtime environment

management so, we need to create the activation record.

So, once this parameter statements are found so, this compiler we will know that the

when it is generating the target code that there will be activation record created and these

are the parameters going to be used in the activation record. So, when the activation

record we will get created in that this x 1 x 2 x m so, they will be given space. So, you

will know how big and activation record you need to make, once you know this

parameter. So, three address code is not for execution. So, we just keep a we it is just for

keeping a note that what will be required at the target level.

So, that is what is kept here so, this i x 1 to x n. So, those parameters are kept and to

proceed to a procedure is implemented using the statements like enter f level f return and

return x retrieve x etcetera. So, enter f is so if I have got a procedure call. So, if this is the

main routine and somewhere here I have given a call to procedure P with parameters like

x 1 x 2 x 3.

Then what it will do. So, it will put this param statements param x 1 param x 2 param x 3

like that. And then it will tell enter P. So, enter P so this will be; this will be of so, when

if this is enter P statement comes so, by this time the activation record has already been

made so, this activation record will be pushed into the stack and then it will be branching

to the subroutine P.

Similarly, this leave f so, this is for the cleanup actions. So, that will be called by this

callee routine. So, there so, that will be done by the callee routine, so, it will be cleaning

up the this activation record area and all. Similarly this return x retrieve x so, this so this

return means there is no return value. So, it will just return from the procedure. So, this

return values are not there, but in return x there is a written value. So, as a result if you

have return like something like say equal a equal to P so, P x 1 x 2 x 3.

Then after returning so, this whole procedure should have some return value x that

should that will be assigned to a. So, this return value is needed so, that is obtained by

return x statement. So, the return value of P is taken into return x. So, if we if this is the

procedure P. So, at the end of it you can have a return x statement, that will do return.

And this retrieve x so, this is will also save return value in x so, that is also there.

So, with these are actually synonymous so many so you can use any of these statements.

So, thus we see that the procedure call return. So, basic procedure call return is also

implemented in a three address code. So, that we can also implement this procedure calls

sub subprogram calls and returns. So, this three address code that we is not very simpler

very low level at the same time it is not very high level also. So, it is exactly we can say

it is exactly at the middle of that two end the source language and the target language.

So, it is almost at the middle of the thing so, that it is equidistant from both the sides. So,

that makes it interesting because if you want to target two different target processors. So,

you can put half of the effort you can say in some sense half of the effort of total

compiler writing for generating the generating a new compiler for the second target

machine.

