
Compiler Design
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 30
Parser (Contd.)

 So, next we will be looking into the closure algorithm. So, for this LR 1 items the

closure algorithm will be similar to what we have the closure algorithm for this LR SLR

parsing.

(Refer Slide Time: 00:29)

So, here but only thing is that this items have got this additional part. So, it has got this

look ahead token part, so, this look ahead tokens will also appear in the closure state. So,

for an item I so, if we are trying to get a closure so, for I we are trying to get a closure we

initialize this set J to I and for each item a producing alpha dot B beta semicolon a in J in.

So, this should be in I this is not in J in I. So, we have to see whether there is a grammar

rule which has got the form B producing gamma.

So, if there is a rule like B producing gamma then each terminal for each terminal B in

the first of beta a. So, when should we go by this rule? When should we go by this rule?

So, this go to B; so, this go to B we will see we will like to see if we can we see that

there is something starting with beta followed by a. So, if there is something like that

then only we will be using that particular transition in the parser. So, that is what is done

here, so, for every production rule so, which is of the form B producing gamma then will

be so for each then for each terminal B in the first of beta a so we are doing this B

producing dot gamma semicolon b it is not in J this is not yet added into the into the set

J. So, we add this B producing dot gamma B to semicolon b to J.

So, that way it is just otherwise it is same only thing is that for. So, previously we did not

for the LR 0 item we did not have look ahead, so, there was this part was absent, so, this

part was absent. So, we were just doing it like this for each production B producing

gamma of J we were adding this B producing dot gamma into J. So, that is what we were

doing, but now I have to tell what is the look ahead part also. So, just to do that, so, look

ahead part is decided by this by you compute the first of beta a and whatever symbols are

coming in the first of beta a, so, we have to add this thing into this set J.

So, this way the process will continue till no more items can be added to J then will be

returning J. So, that is the closure computation algorithm, so, the we can use this for

getting the closure of items.

(Refer Slide Time: 03:08)

And then we can see the GOTO part. So, GOTO part is also a similar. So, there is

initially, so, we are trying to find this GOTO of I X. So, I is an set of items and X is the

grammar symbol then goes initially J is equal made equal to empty. Then if there is an

item like A producing alpha dot X beta semicolon a in I, then we take the closure of A

producing alpha X dot beta semicolon a and then we add that item to J. So, this way we

take the closure and add all those items to J and then it will be returning J. So, this way

we can constitute the closure set the GOTO part for the this LR 1 items.

(Refer Slide Time: 04:05)

Next we will see how, next we will see how to construct the LR 1 passing table. So, for

constructing LR 1 parsing table so, the policy is same as we have done in LR 0 parsing

table. So, we first construct the collection of LR 1 items C is the I0, I1 up to I n for the

augmented grammar G dash and then state i is constructed from this item Ii like this. So,

if A producing alpha dot a beta comma semicolon b is in the item is in the set Ii and

GOTO Ii a is Ij then action i, a is said to be equal to shift j. So, this part there is no

change, so, this is exactly same as what we have for the LR 0 parser, the SLR parser.

But, this one it says that if you have got a rule like A producing alpha dot semicolon a is

in Ii then set action i, a to reduce by A producing alpha. So, here you note that we are not

looking into the follow set of A. So, follow set of A whether it can contain small a or not

etcetera those things are not need not be computed. Definitely the follow set will if it is a

valid thing then the follow of A will contain small a, if the if my string is valid then the

follow of capital A will definitely contain small a that is why this after doing this

reduction. Because the string was something like this so, this part was alpha and then one

look ahead token was a and we said that we will reduce by this whole thing by A; that

means, in some sentential from this small a will appear after capital A.

So, small a is definitely there in the follow set of A, but a may be some symbols for some

cases it will be something different. So, we will be doing this reduction only when we are

getting this i, a. So, in case of LR 0 parser so, this reduction rule was put for all the

symbols which are in follow of A follow of capital A, but in this LR 1 parser. So, we are

adding the rule only to the case where the input symbol is small a.

 And then S dash producing S dot semicolon dollar; so, if it is there in some i sets of set

of item then, we said this action i dollar to accept. So, this is the; this is the simple way

the same it is same as that SLR parsing and if there is any conflict that appear then we

say that the grammar is not it is not a SLR so, this is not LR 1. So, S should not be there,

so, if there is any conflict even after doing this if there is a conflict then the grammar is

not LR 1 grammar.

So, but unfortunately we do not know grammars which are parsers which are more

powerful than this S the canonical LR parser. So, if this thing fails; that means, you really

need to work with your grammar and try to do something or bring some context

sensitivity into the parsing process. So, you by means of context free grammar, so, you

will not be able to generate a parser for the particular language.

 So, we will see that if you look into this parser generated tool Yacc then Yacc, bison

etcetera. So, those tools so, they apart from this LALR or LR 1 parsing table generation.

So, it they also allow several context dependent features and those context dependant

features may be used for resolving the conflicts that are occurring in an LR 1 parser. But,

anyway with a for the time being we assume that once we have come to this LR 1 parser

since it is very powerful so, it has it will be able to resolve whatever constructs we have

in our programming language.

And then the GOTO part is same as what we have in a LR 0 parser. So, if GOTO Ii, A is

equal to Ij then we say this GOTO i A equal to j and all other entries which are not

defined. So, they are they will be marked as error and initial state of the parser is the one

that is constructed from this one, S dash producing dot S semicolon dollar. So, this dollar

is the um end of string character or the so, then this is the previously in case of LR 0

parsing table construction so, we took the item S dash producing dot S and we took the

closure of that. But, here I have to tell the look ahead token also, so, here the look ahead

token is dollar. So, that is the additional thing that we have.

So, this way we can have this LR 1 parsing table constructed and we can have otherwise

the parsing algorithm is same, so, that is same with the what we have in the LR the

parsing 1.

(Refer Slide Time: 09:28)

So, let us take an example suppose we have got a set of grammar rules like this. So, this

goal producing expression producing term plus expression producing term and then this

term producing expression a factor star term produce a factor produce id. So, this is the

grammar G and we have added this additional rule goal producing expression to make

the grammar G dash the augmented grammar G dash.

Now, I set that the first rule the first state or the first set of item I 0 is the closure of this

goal producing dot expression and the symbol the look ahead token is dollar. So, I am

expecting a string I am expecting to see a string expression and that will be followed by

dollar. So, that the next input symbol will be dollar; so that way this is done and then you

have to take the closure of that.

So, this dot expression is there. So, expression producing dot term plus expression so,

this will be created these dollar is carried forward then this expression producing dot

term is taken, so, this dollar is carried forward. Term producing now expression

producing dot term is there. So, based on that this term producing dot factor star term

and but here now this if you look into this one this expression producing dot term factor

dot term comma dollar then this from this dot term you will see that it will be producing

dot factor star term and then from this dot factor it will be giving me this also it will be

giving me a term producing factor and then this term producing dot factor and then this

expression producing term. So, this will be giving me expression producing dot term, so,

this one will come.

And many of these symbols like plus and dollar. So, they will come both of them will

come because another item will be created where this plus will also be coming because

their core part will become same that way it will come.

 Similarly, from I1, so, this is goal producing expression dot will come. From I2 it will be

expression producing term dot and then. So, from this rule expression producing dot term

dollar, so, it will giving me expression producing term dot and this expression it will give

me from this item. So, it will give me expression producing term dot plus expression

dollar, so, this way this items the LR 1 items will be constructed for this particular

grammar.

(Refer Slide Time: 12:26)

Next once this items have been constructed so, we can construct the corresponding table

so, it corresponding automata will be like this. So, S0, S1, S2 so, these are the various

states and then based on this rule that we have seen previously that parsing table

construction rule so we can construct this table. So, this way so, for from state 0; so, on

id so it is so, it from so it is going to state it is on id it is coming to state 4. So, this is the

that is id it is shift 4 and then on this term factor and expression so, it is going to the

states 1, 2 and 3, so, accordingly this GOTO part is put like this.

 So, this way we can construct this table. So, this table construction is same as what we

have in the previous case like this the SLR parsing table for that how we whatever way it

is constructed so, that they will be coming like that.

(Refer Slide Time: 13:29)

So, once this is done so, we can this table is ready, but you see that the number of states

will be much more compared to this LR 0 parser or SLR parser. Of course, for this

particular case we do not have much number of states, but it may so happen in many a

cases that number of states are much higher.

 So, this is LALR parsing algorithm, so, that is also doing a look ahead by one token. So,

they are called LR 1 they are basically LR 1 parsing, but with look ahead they are called

look ahead LR that is why it is called LALR. It reduces number of states in an in LR LR

1 parser by merging states that differ only in the look ahead sets. So, if there are a

number of states that they differ only in the look ahead sets then it will merge all those

states together and call them as one state.

So, as a result this SLR and LALR tables they may they will have the same number of

states. Though we are not proving this result formally so, it can be shown that this SLR

and LALR parsers they will have more number of states whereas, the LR 1 parser will

may have large number of states. So, for a C-like language; so, there are several hundred

states in the SLR and LALR parsers whereas, for LR 1 parser so, it may be one order of

magnitude mode. So, several thousand states may be there in the LR 1 parser.

So, this way we can have this thing we can have this LR 1 parsers converted to LALR

parser. So, we will see how to do that so that the number of states are reduced, ok.

(Refer Slide Time: 15:22)

So, next we will see how an example of how to do this thing. So, first of all suppose this

is the grammar that we have and for this grammar S dash producing S. So, this is the new

rule that is added and this is S producing CC and C producing small c capital C and d.

So, this small c and small c and small d so these are the terminal symbols of the grammar

and rest are all non-terminal.

So, the set I 0 is constructed by which we are for which we are doing this thing. So, this

we are we take this production S dash producing this item S dash producing dot S and

dollar and then we have to take the closure of that. So, closure of that gives me S

producing dot CC dollar. So, now dot CC dollar so, what I have to do is for taking the

closure of this item so I have to consider the first set of.

So, you remember that if I have got a production like X producing dot X dot YZ

semicolon alpha then what I have to do is I have to take the set first Y Z alpha and then I

have to see what is coming there. So, for then the this as this they this look ahead token I

have to do it like this. So, if I have got a production rule like Y producing gamma then

for that I have to see what is the first set of this YZ alpha and accordingly I have to see I

have to add them to the first to this item.

So, here also so, this dot CC and there is a rule like C producing cC. So, when I am

trying to use this rule, so, I have to see what can I what can be derived. So, what is the

first set of this capital C? So, this first set of capital C contains this small c and small d,

so, they are added. So, I have to see what is there in the first of this C dollar and this first

of C dollar capital C dollar will have small c and small d, so, this is the item that is

created.

Similarly, by this rule it will be C producing, so, I am looking into the C producing d, but

I have to see like what are what are the first of this C, C dollar and the first of C dollar

again having C and the small c and small d so, they are added to the look ahead token. In

this way this look ahead tokens are calculated. So, this is a bit cumbersome, but that is

the technique ok, so, we have to do it like this.

So, you see for the small grammar having only to say three grammar rules S producing C

cC producing small c, capital C and or d, so, the three grammar rules. So, there are 10

states that I created that way it is a large number of states that have been created.

Now, what we look into this for converting into LALR consider the states I 4 and I 7, so,

I 4 and I 7. So, you see that they are the core part is same. This is also C producing d dot,

this is also C producing d dot. So, what is differing is only the look ahead part. So, here

the look ahead part is C d, here the look ahead part is dollar. So, we will be combining

them together and call them a new state I 47 and this has got C producing d dot

semicolons that look aheads will have look aheads of both the states c, d and dollar. So,

c, d and dollar they have been taken into consideration.

 Then the I third then this 3 and 6; so, 3 and 6, so, this is 3 and this is 6. So, here also the

look aheads are this a core part is same. So, it has got core like C producing small c dot

capital C, so, this is matching; then C producing dot c capital C this is matching, C

producing dot d this is also matching. So, again what is differing are the look ahead

tokens. So, this look ahead tokens so, they will be merged together and we will be

getting this I this state I 36 and this 8 and 9. So, here also this 8 and 9 so, they are

matching. So, their core part is matching, so, we just merge them together.

So, essentially from this 1, 2, 3, 4, 5, 6 states so, we could reduce them to 3 states. So,

total originally there were 10 states and now from the 6 states. So, 10 minus 6, 4 and 3

new states created, so, total number of states turns out to be 7. So, if we construct the

SLR parsing table then you can check that this also gives rise to seven states. So, that

way this is going to be this LALR parsing. So, this is going to help us of course, it is

cumbersome in the sense that we are. So, we are the way that we have done it we have

first produced the LR 1 items so and then we are trying to see whether there is any

merging possibility between the items.

 So, that way the constructing the LR 1 items itself is costly and then if you so, then

checking for the merging and all. So, that is why this LALR parsing construction parts of

construction is going to be a costly affair though automation is no problem. So,

automation can be done, so, rules are well defined, so, we can do the automation very

easily.

(Refer Slide Time: 21:01)

So, what can be the other way of constructing the LALR parser? So, this is known as

step by step approach for this LALR parsing table construction this item construction.

 So, sets of item sets of states constructed as in LR 1 method only; however, so, we do

not construct the entire LR 1 set of items and then try to do the reduction, then try to

merge the items instead of that at each point whenever a new set is spawned. So, we may

we see that whether it can be merged with an existing set or not.

So, in the previous example you see that when we had so, when we had generated this

say for example, this state number this particular state 7. So, whenever we are generating

this 7. So, whenever this is generated we see that it is matching with 4. So, we do not

generate a new item or new set 7 rather we add this dollar to this set, so, that way it is

going to be done. So, with the it will not generate large number of new state, so, number

of states generated will remain same as the S LR parsing.

So, that is how this parsing table for LALR this set of items for LALR parser will be

created that at each point when a new set will be spawned. So, you will see whether it

can be merged with an existing set or not. Whenever a new state S is created all other

states are checked to see if one with the same core exists. And if so, if it is not if there is

no such thing exists then S will be kept otherwise it is merged with the existing set T and

we name the core as name with the same core to form the state ST.

So, previously you have seen that we have named the states as 47; 47 the I 4 and I 7 were

merged, so, we told the item to be I 47. So, similarly this 3 and 6 was merged, so, we

called it I 36 or I 36 like that. So, that way this merging is done and after doing the

merging so, we can get the after doing the merging we get the new set of states and the

new set of states will be number of states will be same as the SLR number of states. So,

this way we can step by step we can construct the LALR parser.

(Refer Slide Time: 23:26)

 So, after this so, since it is very difficult to do some exercise on this SLR and this

canonical LR and LALR parsing. So, rest of our discussion will be constructing will be

restricting ourselves to SLR parsers only. But, whatever discussions we do with SLR

parser so, they will also be valid for this canonical LR and LALR parsers. So, the

strategy will remain same only thing is that maybe for some grammar where this SLR

parser is giving rise to conflicts this canonical LR and LALR will may not give you

conflicts. But, there may be situation where the grammar is such that it also gives

conflict there, so, in that case we have to resolve conflicts accordingly.

So, how to so, next important issue that we will be looking into is the usage of

ambiguous grammars for this parser construction. So, ambiguous grammar means that

there is ambiguity. So, like this is that famous ETF this expression grammar previously

we had written like E producing E plus T or T then T producing T star F or F and F

producing within bracket E or id, so, this was the grammar.

 Now, what do we do we do not take this extra non-terminal symbols this ETF. So, why

this non terminals T and F were introduced they were introduced to ensure the

precedence of the operators because until and unless you have done this until and unless

you have reduced to a T so, you cannot reduce to E, but for reducing to T so, this

multiplications are already taken care of. So, with this you can so, whenever you are

doing a reduction to E either it can be a an expression that does not contain any

multiplication or it is an expression where there is a addition operation and one part of it

and the two parts of it they can contain addition or multiplication, but at the top most

level I have got multiplication addition.

 So, that means, the addition it has got the lowest precedence compared to this

multiplication. So, this way similarly this F is put within bracket E. So, F is F has been

introduced to ensure that this parentheses it has got the highest precedence over any

other operator. So, this way this parser so, it could generate pars trees unambiguously,

but the difficulty that we face is many a times what happens is that as you are increasing

your number of non-terminals in your grammar so, the parsing table becomes larger, but

in particular at least the GOTO part of the table that will become larger because GOTO

part will have one entry for each of the non terminal in each of the states.

So, that GOTO part is going to have problem. Like if I say that this after constructing the

item so, suppose if I see that if there are say m number of items and there are three non-

terminal symbol. So, GOTO part will have at least M into three number of entries.

Whereas, if somehow I can make this grammar that has got only say one non terminal

then that table of table size will become M into 1. So, that way the number of entries in

the table becomes small, so, that table becomes simple.

So, what we do we many times this parser the parser generators they say that you we

purposefully make the grammar ambiguous. So, that the parsing table size becomes

small and then naturally once we do that so, it can give rise to conflicts. So, I can so, I

have to reduce I have to dissolve this conflicts and we dissolve the conflicts in a

particular fashion. So, depending on the grammar so from the knowledge about the

language for which we are designing the parser. So, we can try to resolve the we can try

to resolve the ambiguity by putting additional rules.

Like, if I substitute if I write this particular grammar without using this extra non

terminals T and F I always tell it is E, then we know that this addition has is of lower

precedence than multiplication. So, if this I think is told to the parser so, when it is

generating the pars tree so, if it has got a confusion that on getting the next input symbol,

the input operator plus or star whether to shift or whether to reduce, so it can take a

decision depending on what operator it has seen and what is the current situation, so,

based on that, it can take a decision.

So, we will see that this ambiguous grammars it can lead to conflicts, but at the same

time this ambiguous grammars so they can be used to make the parsing table small and

that helps in the overall parsing process, so, makes the parsing process faster. So, that

way, this sometimes we will see that we purposefully make it make the grammar

ambiguous.

