
Compiler Design
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 03
Introduction (Contd.)

So, we are discussing on phases of a compiler so in that we can see that it starts with the

source program and that source program goes through a serious of transformations

through various stages, and these stages they work hand in hand to produce the final

optimized code.

(Refer Slide Time: 00:32)

So, to start with the source program goes through a phase called lexical analysis, so this

lexical analysis phase it takes out, it identifies the words that you have in the program.

Then so that formally they are called token because this is something more than the word

so it is some identified corresponding to the words that we have plus some information

like if it is a number; for example, then what is the value of that number. So, accordingly

that the token may contain a token id part and one value parts.

So, we will see that later. Those tokens are used by the syntax analysis phase in the

syntax analysis phase we check the grammatical correctness of the program. So the

grammar rules of the language they are consulted. And whether the words appearing in a

particular sequence gives rise to a meaningful program or not or syntactically correct

program or not so that is evaluated by the syntax analysis phase.

So, output of the syntax analysis phase is a part 3. So, that shows how the grammar rules

of the program can be utilized to show that this program is syntactically correct or

grammatically correct.

And so, grammatical correctness does not mean that the program is also semantically

correct. For example, say one integer variable and the real variable both of them are

identified as variable, but what we need is that we need to also sometimes we need the

certain operations that can be done on integers certain operations can be done on real.

So, we need to categorize between these 2 types of variable. So, that those are done by

the semantic analysis phase, and there we check whether the way the program constructs

or are the components in the program had been used so whether that is correct or not. So

if the syntax and semantics of the programmer correct, then it goes into the code

generation process, and there it goes through a 2 phase code generation.

In the first phase one intermediary code is generated and from there the final target code

is generated. So, intermediary code is in some hypothetical language and from there

whichever processor for usually want to generate the code that is the target processor so

for the target processor the code is generated.

So, the target code it goes through optimization because of these automated process they

are remains many scopes at which the program can be or the generated code can be made

more efficient in terms of execution speed, in terms of area or the total storage

requirement. So, that way so it goes into code optimization phase.

And output of the code optimization phase is optimized target code. Now as we have

discussed in the previous classes that ok, so, it is not mandatory that the compiler will

produce only optimized code so for silicon compilers it will produce optimize circuitry.

So, they are also optimization is necessary because it may so happen for example, 2

inverters they come one after the other. So, an optimization may remove those 2 inverters

because they replace them by a equivalent operations. So, that way so this type of

optimizations are necessary.

So apart from this major flow so there are 2 more operations that are done in a compiler,

one is the symbol table management so all the symbols that are defined in the program.

They are kept in a table called symbol table. And this lexical analysis phase and syntax

analysis phase they actually make the symbol table and the later phases they are actually

going to use the symbol table.

And there is another module which is error handling and recovery of module. So, that

actually tries to give hint to the user like what are the possible errors in the program, and

accordingly it will the user will rectify the program and give it for compilation again.

And while doing this error handling so it may so happened that the compiler itself goes

into a state from which it cannot proceed further ok. So, in that case some recover

reaction is necessary so that is why this stage is called error handling and recovery. So,

recovery maybe it will discuss some of the last few words that it has been in the source

program. So, that it can come to a valid state.

Typical example is maybe if there is some error in a line so if in the syntax of the

programming language says that every statement should end with a semi colon, there it

will skip all the symbols till it gets a semi colon because after that it knows that ok, I will

be in a clean state where I expect a new sentence. So, that way this error handling and

recovery routines are going to be useful.

(Refer Slide Time: 05:33)

So, we will see them in this part of the lecture we will try to have an overview. And later

on for each of these phrases we will dedicate quite a few lectures discussing about their

development. So, the first phase is the lexical analysis phase, so this is the interface of

the compiler to the outside world so any program or the component that we want to

compile. So, it comes to the lexical analysis phase. So, the major job of the lexical

analysis phase is to scan the input source program and identify valid words of the

language in it.

So, as I was telling that at the lowest level of a language you have got alphabet set. So,

every language will accept certain alphabet, and those alphabets are combined in some

fashion to make the valid words. Now, if those if the next combination of this alphabet is

such that these does not make any word of the language, then the lexical analysis phase

is supposed to identify that, and then it can tell that this word is not known to this

particular language so this that is an error.

So, that is the purpose of the second point that we are discussing, it will scan the input

source program and identify the valid words of the language unit. Now apparently it

seems it is a very trivial job, but it is not so really because when we are writing programs

so, we are we are very much flexible. Like in the sense that somebody some programmer

may write the entire program in a single line because it just says that after going from

one line to the another line you have to put a semi colon. So, somebody may write a

program in this fashion say, x equal to y semi colon y equal to z plus k then x equal to x

plus k so, something like this.

Somebody may put it in separate lines x equal to y in one line, then y equal to z plus k in

another line, then x equal to x plus k in another line, somebody may like to put some

comments also here, somebody may put a comment here at and this comments may also

run in multiline fashion. And this somebody may write this line y is equal to z plus k as y

then a quite a few blanks then z, then again quite a few blanks then k.

So, this type of variants variations in the source program can occur. So, we need to

identify, you need to identify this situation somehow we need to ignore all this extra

cosmetic things that are put into the line. Similarly, so whether the program is written in

this fashion or this fashion or this fashion everything is correct ok, all of them are

correct.

So, this lexical analysis phase it is responsible to take out the actual words meaning full

words from the program so that is why it is job is a bit difficult. So, we will see that so it

will remove cosmetics. So, as I said extra whitespace so whitespace means that blank,

then tab, then new line characters.

So, they are all white spaces so it will try to remove it will remove all the extra white

spaces comments, so you may put some comments in lines of comments are not

compiled. So, they are not meaning full to the machine. So, they are to be removed. So,

that removal is also done by the lexical analysis phase. So, these are some of the

responsibilities, in many programming languages for example, in c language you will

find that we have got macros like we say, hash define hash define say max 5.

(Refer Slide Time: 09:19)

And later on in the program wherever I write say x equal to max. So, that this max has to

be replaced by 5. And that is we know that it is this translation or this transformation is

done at the compile time. So, this max is replaced by 5 at the compile time.

So, this is also actually done by the lexical analysis phase. Similarly, we have got another

compiler directive like hash include in c language. So, we say that hash include stdio dot

h or some any other file.

So, what it means from the language we know that this stdio dot h this particular file will

be attached to your program before compilation. So, before so this stdio dot h file has to

be taken and it has to be attached with your program. So these are all done by the lexical

analysis phase.

So is expands the user defined macros, they has defines hash includes excreta so all those

pre compiler direct this they are all expanded by the lexical analysis phase. Reports

presents of foreign words, as I was telling that some words, some sequence of alphabets

maybe put which is meaningless for the particular language.

So, it can report that such an such word is not in my language. So, that is the foreign

word; may perform case conversion like sometimes the we need to do case conversion

upper case to lowercase or lowercase to uppercase.

So, sometimes a language is case sensitive sometimes it is not. So, accordingly this

lexical analysis phase it may have to do some case conversion. Now as an output, this

lexical analysis phase it generates a sequence of integers called tokens. So, all the before

this lexical analysis phase what we have is a program which is a character stream.

So, it is a stream of characters, but at the output of the lexical analysis phase, what the

lexical analysis tool has done, is that it has identified the words that are present in those

character stream. And for every word it has got a predefined integer. The compiler has a

predefined integer value and that value is passed from that point onwards.

So, from the lexical analysis point onwards so, we can say my program is nothing but a

sequence of integers so that is called a token. So, it generate a sequence of integers called

tokens to be passed to the syntax analysis phase and naturally later phases did not worry

about program text.

So, handling working with characters is a problem because there may be spaces and all.

So, once it is a number it is sequence of numbers the handling then becomes easier. So,

this is we will see that in detail those that is all the responsibility of lexical analysis

phase.

So, it is generally implemented as a finite automata, so as I said that compiler subject is

very much dependent on the automata theory. And this lexical analysis tool, it uses the

finite automata for design for it is construction.

And we will see that there are different types of finite automata non deterministic finite

automata, deterministic finite automata and also this lexical analysis tool can be built

around those finite automata.

(Refer Slide Time: 13:00)

So, after the lexical analysis phase the next stage is syntax analysis. So, the syntax

analysis phase it is also known as parser. So, this phase is also known as parser. So, we

will be using these 2 terms interchangeably just remember that they mean the same thing.

So, this parser it takes words or tokens from lexical analyzer, and they work hand in

hand, so it is not that this first the lexical analyzer will generate all the tokens that is

there in the program; then the parser will start working on that it is not like that. So, the

way it operates is the parser starts as and when it needs to know what is the next token.

So, it will ask the lexical analysis tool what is the next token, so accordingly that lexical

analyzer will scan the input, and it will return the next probable token. So, that way it

goes, so they work hand in hand with each other this lexical analysis and syntax analysis.

The major responsibility of the syntax analysis phase is to check for syntactic

correctness, grammatical correction. So, for example, if you look into any language so, it

will say that for example, I have got an if then else statement so it is said that first this q r

if should appear, then some condition should come, then some condition should come,

then the keyword then should come, then I can have some statements else some

statements. So, out of that this else statements of this part is optional ok.

Now, if see this if then else status so this is a grammar so it starts with the keyword if

then this condition. So, condition is nothing but some expression and what type of

expression is supported in the language so that is also depicted by the language designer.

So, they have told what can be the expression, so the a conditional expression so that will

be there. Then this keyword then should appear then we can then we should have some

statement.

And after that we have an optional else parts so if this optional part is present then this

else q r must be present. So, that is the grammar rule so we do not have any grammar

rule I cannot write like this if then S 1 else S 2. So, this cannot be written because

grammatical this is correct incorrect because in between I needed a condition so that is

missing.

So, the syntax analysis phase will actually identify this type of mistakes if the whether

the program is syntactically correct or not or grammatically correct or not and if the

program is grammatically correct if the input is grammatically correct then it will

identify a sequence of grammar rules to derived the input program from the start symbol.

So, as I said that the language is specified by a grammar and every grammar has got a

start symbol. So, that all strings that are allowed in that the possible in that language they

can be derived from that start symbol using the grammar rules.

(Refer Slide Time: 16:21)

So, there is a special start symbol say S. So, if this is the set of all strings that are allowed

in the language. So, these are the strings allowed in the language in the language L.

Then, if you use the grammar rules so if G is the set of grammar rules so you can use this

set G so that you can have derivation to all of them from this start symbol and in the

derivation process it uses the grammar rules of G.

So, then this S is called the start symbol of the grammar. So, all valid programs they can

be derived from the start symbol, on the other hand if the program is syntactically

incorrect then you cannot derive the program from the start symbol of the grammar.

So, that is the idea so theoretical, the automata theory so it will allow us to do this

particular exercise. It will give us a tool by which if a program is syntactically correct.

So, we will be able to derive the full text of the program starting with the start symbol of

the grammar. On the other hand, if the program is syntactically incorrect it will not be

possible to derive the program text starting with the start symbol of the grammar.

So, that is the point or that is the advantage of this syntax analysis phase. And if the

problem is syntactically correct so it will construct a parse tree. So, parse tree is basically

telling us how this program can be derived for example, if suppose I have got an

expression x equal to y plus z into r then you can say that as if this can be derived like

this, that I have got a statement for an identifier equal to sum expression.

Where this expression is expression plus expression, this expression is giving me an id

which is y and this expression is giving me another expression multiplied by expression

and this expression is id which is z, and this expression is another id which is r ok.

So, this way we will see that this type of trees can be drawn, where starting with the start

symbol of the grammar will be able to derive the whole string. So, this is called the parse

tree so we will come to this again later when we go to the syntax analysis phase.

And in this apart from this generation of parse tree so, for the correct programs it will

generate the parse tree, so what about incorrect program? For incorrect programs it will

flash error messages that so that the user can rectify those errors and then you can again

give the job for compilation.

So, this error message design error message display pointing the actual errors and

identifying more number of errors in a single pass, so they at the challenges that we have

in the syntax analysis phase. So, next comes the semantic analysis.

(Refer Slide Time: 19:50)

So, semantics of a program is dependent on the language, so for the same sentence or

similar sentence to languages name in 2 different functions ok. So every program is

nothing but some computational some function. So, whatever input you are taking the

program is transforming the input to some output so in some sense the program is a

function. So, that function is specified by means of the program statements.

So, that meaning, that function that we are talking about. So, that is the semantics of the

program. So the meaning of the program, so meaning of the program is the function that

it is executing that it is representing.

So, semantics of a program is dependent on the language, a common check is for types

of variables and expressions. So, this is a very common sort of thing that we have you

know almost all the programming languages where type check is mandatory. Why?

Because so for certain operations you cannot do on a certain type of variable; for

example, you have got this integer division and integer reminder operation so which are

not applicable for real numbers.

On string variables, you can have string concatenation you can have search for a

substring and all, which are not applicable if you are taking an integer variable or a real

variable like that.

So, if the user of the programmer has done some mistake and has got has written some

something which is wrong from the point of view of types of the variables and

expressions so that should be caught. So, a common check is of the semantic analysis

phase is for type checking, where we essentially check the applicability of operators to

operands.

There are certain scope rules of language that are applied to determined the types, like

say for example, at some points suppose I write say x equal to y plus z fine. Now it is

desirable that these expression y plus z it is type should match with the type of x, but

how do we know what is the type of y, what is the type of z, what is the type of x.

So, you say that if this whole thing is within a function then somewhere earlier so, the x

x, y and z have been they have been declared. For example, there may be declaration like

integer xyz ok. So, you can take that so you get an idea like what is the type of x, y and

z. So, when these types of this variables can be obtained at the time of compilation itself.

So, that is called static scope, the scope of the variable or a scope of a definition it is

static.

So within this function the x y z all of type integer; however, there is there is another

type of scope rules which says that it depends on the execution sequence in which the

functions are invoke so, that will determine the values of x, y and z.

For example, in c language you know that if I do not declare the type of a variable in a

function and if the variable is as a available globally, then the compiler will take the type

of the variable as whatever is defined globally. However, some programming languages

that allows nesting of this functions or nesting of procedures.

So, if something is defined some variable is used somewhere whose type is not available

within the function, then it will go up and go up in the hierarchy and it will try to identify

the block at which this particular variable has been defined. So, that way this nesting of

this programming language structures. So, that will determine the actual value actual

type of the variable that we are going to use.

So, that actually comes under the scope rules, so, we will discusses about these in detail

when we go to the type checking and all. So, for the time being so you know that

programming languages they define some scope rules in their definition in their

specification and as a compiler designer we have to follow those scope rules for code

generation.

(Refer Slide Time: 24:22)

So next we will be looking into so till this much so if a program is semantically correct;

that means. So, we there is no error which is done by the programmer at this point. So, it

can go into the code generation phase.

So, this code generation phase it as I say that it goes through 2 different stages; one is

called intermediate code generation, another is called the target code generation. So, in

the intermediary code generation so we use some hypothetical language and code is

generated in terms of that language. So, why is it done? So we will see it very shortly.

So, this is and as such this intermediate code generation is an optional states, so it is not

necessary that you should always generate an intermediate code and then go to target

code. So, it is an optional stage and the code that is generated it corresponds to input

source language is generated in terms of some hypothetical machine instructions and that

is up to the compiler designer to assume the language, the statements of that language.

And we will see some types of this intermediary language later in our course.

So, you will see that we have got flexibility like we can say that my language will

support this so type of constructs, and accordingly the code will be generated using that

language. The point that helps it that will help us by having this intermediary code

generation is that; it will help to retarget the code from one processor to another. So, it is

like this, suppose I have designed a compiler which is targeted to say Intel x 86

architecture.

So, for that we know that x 86 has got an instruction set so we can generate code

targeting that x 86 processor and the code for that. Tomorrow the same compile if I want

to generate code for some say dec alpha machine so that will not possible because the

same code will not run there so I have to again do the entire code generation phase.

And that we can save it difficult because now I have to most of the time this code

generation is integrated with the parsing or the syntax analysis phase, and then we have

to start modifying the syntax analysis phase the from that point onwards so that makes a

difficult.

So, what is generally done; this intermediary code generation is that so which once you

have a code in that intermediary format so from there it is just a template substitution

sort of thing. So, for each intermediary language statement, you can have a template in

terms of the target language code, targets language code and then you can just do this

template substitution to get the target language program.

So, the retargeting the compiler becomes very easy, from one processor to another

processor. Now what about the power of this intermediary language? So, it must be

power full enough to express programming language constant.

So, we will that if it is far away it is very very if it is met to simple then it will not be

able to catch the programming language constructs or it will not be able to represent the

programming language constructs very easily so it will be difficult there. At the same

time if it is at a very high level then also there is problem because it will be far away

from the machine language code; that machine language of the processor. And then it is

another compilers job to translate the intermediary code to the machine language code.

So, both way we have got difficulty.

So, you have to do something so that we are add some intermediary stage which is

equidistant you can say it is more or less equidistant from this source code and the

machine code, so we will see them slowly.

(Refer Slide Time: 28:21)

So, this is the thing that I was talking about. So, we have got a source program that is

source program passes through various phases of compilers. And after that it comes to

intermediary code generation. So, this intermediate code generation phase produces an

intermediate code.

So, this source language program after going through this compilation phase so it has

come to an intermediate code representation. Now, from this point onwards so if I am

trying for trying to generate code for machine 1.

So I can have a small piece of code which will translate this intermediary code into this

code for the machine 1. If I want to retarget the code to target to machine 2. So, that can

also be done by developing a small translated here as I was telling that this is simply a

template substitution sort of thing. So for example, if I have got a statement like say x

equal to say, say x equal to y plus z. So, this may be a statement in the intermediary

language.

Now, when I am talking about machine 1so machine 1 may be it is a machine where are

this y and z can be kept in the memory and the x has to be a register. So, we can say that

Add y z R1 and then store x, R 1 where as in M 2 it may so happen that it does not allow

this memory operands directly so all the arithmetic operation so they are to be done on

registers. So, in that case the code generation will be something like this that LOAD R1

comma y LOAD R 2 comma z ADD R 1, R 2 and then STORE x comma R 1. So, you

see that if this is the program, if this is the intermediary language statement that we have.

So, if I have this type of small small templates for addition so this is the template in M 1

this is the template for M2. So, I can do a simple template substitution so this x equal to

y plus z is substituted by these template for M 1 and this template for M 2, so you can

generate the corresponding code easily. So, I do not need to regenerate the, redo the

entire phase of the compiler I do not have to start designing the compiler from the

scratch. So, that is the advantage that we have with this intermediary code.

(Refer Slide Time: 31:09)

Now, to coming to the target code generation phase so target code generation is phase is

nothing but template substitution from the intermediate code. Predefined target language

templates will be used for generating the code, machine instructions addressing mode,

CPU registers. So, they will play vital roles. So, here come the architectural input like the

architecture designer have told ok.

This is these are the machine instruction, these are the addressing modes, these are the

CPU registers which register can be used in which for which purpose and all. So,

everything has to be documented and the compiler designer has to know that by heart

and then accordingly do the code generation phase, so that is that makes it very critical.

Temporary variables are and user defined and compiler. So, they are generally packed

into CPU registers so that this operation can be made faster. So, this target code

generation is nothing but some template substitution and these templates will be design

very carefully by taking consideration of this machine details like machine instructions

addressing modes CPU registers etcetera.

