
Compiler Design
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 27
Parser (Contd.)

(Refer Slide Time: 00:15)

So, next we will be looking how into an example of how to use this particular table for

doing a parsing operation. So, let us consider an input string which is given by this

expression. So, this a, then sorry a, then comma then a comma a comma, then a comma

a, then two close parenthesis. So, this is the string. So, we will see whether we can derive

this string using parse this string using this operator precedence parsing table.

So, as you know that we will have two parts in our formulation; the first part will be the

input and the stack. So, initially input is this whole string. So, this is a comma within

bracket a comma a comma a comma a and it is terminated by dollar and the top of the

stack is also dollar. So, we have got open parenthesis and dollar. So, top of the stack is

dollar. So, dollar is less than open parenthesis. So, it will tell that it tells that I have to

shift this open parenthesis into the stack. So, the configuration changes to something like

this. Then, open parenthesis and dollar and then, this next input symbol is a and top of

the stack is open parenthesis.

So, open parenthesis is less than a; open parenthesis is less than a. So, this will also be

shifted into the stack. So, this input now becomes comma a comma a comma a comma a

dollar and this becomes a open bracket dollar. Now by this rule, so comma and a; so,

comma so top of the stack is a and a is of higher precedence than comma. So, a will be

popped out from the stack. Now, last top of the stack is now open parenthesis and a is the

symbol popped out. So, open parenthesis is open parenthesis is of lower precedence than

this one, open parenthesis lower precedence than symbol a.

So, the popping process stops. So, it is at this situation. Now, we have got comma and

open parenthesis and comma is of lower precedence than open parenthesis. So, it will be

shifted. So, you will be the input string will be like this. So, it will be comma, open

parenthesis and dollar. Now, we have got this open parenthesis. So, comma and open

parenthesis, then comma is of lower precedence than open parenthesis. So, it will be

shifted. So, the input will be like this.

So, open parenthesis will be shifted, then comma then another open parenthesis and

dollar. So, this will be the situation. Now, open parenthesis and a; so open parenthesis

and a, open parenthesis is of lower precedence than a. So, a will also be shifted. So, the

situation will become, so, a will be shifted. So, a open parenthesis comma open

parenthesis dollar. So, that is the stack. Now, between a and comma, a is of higher

precedence than comma. So, a is popped out.

Now, top of the stack is open parenthesis and open parenthesis is of lower precedence

than a. So, the popping process stops. Now you have got the situation; a now we have

got the situation where comma is the next input symbol and open parenthesis is the top

of the stack and this open parenthesis is of lower precedence than comma. So, comma

will be shifted. So, we have got this situation comma is shifted fine. Next I have got

comma and a and comma is of lower precedence than a. So, a will be shifted; a will be

shifted ok.

Now, I have got a and closed parenthesis. So, a and closed parenthesis; a is of higher

precedence than closed parenthesis. So, a is popped out from the stack. Now comma and

a, so, comma and a; comma is of lower precedence than a. So, this pop process stops.

Now, I have got this closed parenthesis and comma. So, closed parenthesis is of higher

precedence sorry comma and closed parenthesis. So, comma is of higher precedence than

closed parenthesis. So, comma will be taken out from the stack and now I have got open

parenthesis and comma.

So, open parenthesis is of lower precedence than comma. So, the popping process stops.

Now, I have got this closed parenthesis and open parenthesis. So, closed parenthesis is of

higher precedence than open sorry, open parenthesis and closed parenthesis. So, open

parenthesis and closed parenthesis, they are of equal precedence. So, they are so, it will

be pushed into the pushed into the stack. So, this becomes comma a comma a; then this

dollar, now I have got this open closed parenthesis open parenthesis comma open

parenthesis dollar on to the stack.

Now, top of the stack contains closed parenthesis and the next input symbol is comma.

So, closed parenthesis comma higher precedence. So, this is popped out. Now top of the

stack contains open parenthesis and last symbol popped out is closed parenthesis. So,

open parenthesis is of equal precedence as closed parenthesis. So, this is also popped out.

Now top of the stack contains comma and symbol popped out is closed parenthesis. So,

closed comma is of higher precedence than closed parenthesis. So, this comma will also

be popped out. This, comma is also popped out.

Now, you have got this plus and dollar. So, now, this open parenthesis, this open

parenthesis and comma. So, open parenthesis and comma. So, open parenthesis of lower

precedence than comma. So, the process stops. So, we have got the next situation as open

parenthesis and comma. So, open parenthesis and comma say it should be less than. So,

it will go to a comma a, then dollar then this would be comma open parenthesis dollar.

So, it will proceed like this ok. So, this way you can continue in this table. So, ultimately

we will find that the top of the stack input will also be a dollar and top of the stack will

also be dollar. In that case it will be in an accept state. So, you can just continue few

more steps to get the final table.

(Refer Slide Time: 08:49)

Next we will be looking into the LR parsing process which is even a better version than

operator precedence because operator precedence parsing the basic difficulty that we had

is that it cannot give us for parser for many of the grammars which do not have this

operator grammars structure ok.

 (Refer Slide Time: 09:03)

So, this LR parser. So, this is the most prevalent type of bottom up parser and LR k is

mostly; so, in general we will call LR k. So, where, k is the number of symbols that we

do a look ahead. So, this LR; so, this L and R, so these two letters L stands for L stands

for this left to right scan; L stands for left to right scan and then this R stands for

rightmost derivation in the reverse; rightmost derivation in reverse. So, it is in reverse

because it is a bottom up approach. So, it is that is why it is in reverse.

So, it produces rightmost derivation unlike that LL, so, which was producing a left most

derivation. So, this will give a right most derivation. Both LL and LR they will do a left

to right scan, but the which symbol to be replaced, so that will differ. So, we in general

we will have got LR k parser. So, where k is the number of tokens that you do a look

ahead or number of symbols that you look ahead. Now, in general we will have k value

less or equal 1. So, will be looking into LR 0 and LR 1 grammars. So, will be looking

into LR 0 and LR 1 grammars.

So, LR 0 will give us the SLR parsing table; whereas, this LR 1 will give us the

canonical LR type of structure. Now, why should we go for this LR parser because most

of the parsers that we will find, so they will be of this nature. They will be LR parser. So,

why should we have this? So, first of all this is a table driven parsing. So, it is there is no

recursion involved in it and can be constructed to recognize almost all programming

language constructs. So, here though it written here as all, but it is it need not be also it is

almost all.

So, and it is most general non backtracking shift reduce parsing method. So, it if there is

no backtracking involved, so, you do this coding for this is pretty easy and there is no it

follows the shift reduce parsing policy that is fine. So, can detect a syntactic error as

soon as it is possible to do so. So, this is the fastest method to detect syntactical errors.

Main reason is that it is following a bottom up approach and it is trying to identify the

handles in the stack.

So, that is why as soon as it finds that there is possible handle, but it cannot be derived

from any of the inputs any of the sentential forms; in that case it can flash the error. So,

this way it can find out syntactic errors as fast as possible and this is the most important

observation that the class of grammars for which we can construct LR parsers are the

super set of those for which we can construct LL parsers.

So, if for a language you can construct LL parser, so you can also construct LR parser for

that. But the reverse may not be true. So, you may be having only the you may not be

able to formulate LL parser, if we have got if we for language that can support you

getting LR parser.

(Refer Slide Time: 12:47)

So, there are three different methods of this LR parsing that will be discussing in this

course. One is the SLR parsing or simple LR, they are easy to implement and it is less

powerful. So, powerful in the sense that the class of languages for which you can

construct a parser without any shift-reduce conflict or reduce-reduce conflict.

So, without any conflict so the set of languages for which you can construct a parser. So,

if that set is pretty large, we will say that the parsing strategy is powerful. If it is not that,

so we will say it is less powerful. Then we have got Canonical LR, it is a most general

and powerful. So, this; so, this is the I should say the most general so for whatever

language you can construct a shift reduce parser. So, we can do a we can construct a

canonical LR parser for that. However, the difficulty is it is tedious. So, you will see that

there are large number of states that will be created in the parser. So, that way it is

difficult to make to make a CLR or Canonical LR parser like that.

And costly to implement because since the number of states are more, so you will have

this policy of the program that will be rise that will be used for getting this parser will be

difficult. So, contains much more number of states compared to the SLR parser. So,

when we look into some example, it will be more clear. Then another class of parser

which is known as LALR which is look ahead LR. So, it will do some look ahead and try

to see whether it can do better in terms of resolving the shift reduce conflicts.

 It is a mix of SLR and canonical LR can be implemented efficiently and most

importantly it contains same number of states as simple LR for a grammar. So, it is it has

got same number of states as your SLR parser, but power wise it is same as the

Canonical LR parser. So, what we normally do is that we construct the Canonical LR

parser and from there by doing some equivalency analysis. So, we try to merge the states

and come reduce that Canonical LR parser to a SLR to an to an LALR parser and the

resulting LALR parser will have same number of states as the SLR parser

However it will be much more powerful than the SLR parser and its power will be same

as that of the canonical LR parser. So, that is why most of the automated tools that we

have. So, they will try to construct an LALR parser though the construction process is

difficult. So, if you if you are trying by hand you using a pen and pencil, pencil and

paper type of approach.

So, doing it by hand, then you can most of the time. So, you will find that you can make

the SLR parser by hand, but doing the canonical LR or the LALR parser by hand is a

very tedious job. So, excepting for very simple grammars, so will not be able to do it by

hand.

(Refer Slide Time: 16:01)

So, all this LR parsers, so you have got a concept of State and a state represent a set of

items. So, what is an item that we will define and LR 0 item. So, when I say LR 0; that

means, it does not do any look ahead’s. So, it just looks into the current input symbol and

based on the state in which the parser is and the next current input symbol, it will take a

decision like what to do. So, what which state to go next or what should be the action.

As we know that there all are four action shift, reduce, accept and error. So, which action

to be taken? So, it will be deciding on that. So, if there is a production a producing XYZ.

So, like this then we can have. So, all these are items. So, an item you can say that it is

like a production rule with a dot somewhere on the right hand side. So, here, so this is an

item where dot is at the beginning; this is an item where dot is after the X symbol. So,

this is after the Y symbol and this is after the Z symbol.

So, that is the notation, but what do we really mean by that? So, when we say that we are

in a state that has got this as an item. So, we are in a state where we have got this a

producing dot say dot XYZ as an item; that means, in this state I am expecting to see a

string which is derivable from XYZ on the next input. So, whatever be the next input

symbol say A, so that means, if you if I am currently in this state and the next input

symbol is A. Then it will be it will be leading to derive a string. So, from this point I will

be I will expect that I will find a string which is derivable from XYZ.

So, this way it will try to do a prediction like it will try to a figure out which rule which

type of derivation I am going to see and that is what it will be doing. Now what about

this one? So, Y producing X dot YZ. So, this means we have already seen a part of the

string we have already see seen a substring which is derivable from X. So, as if this is the

next if this is the input, then we are at this point a. Then, this part in this region I have

already seen a string which is derivable from X and then, the next input symbol is a and

from this point I am expecting to see a string which is derivable from YZ ok.

So, that way, so this dot is very important. So, dot means the portion before dot is I have

already seen that. So, in some state, so if I have; so if I have what say number of items

like say A producing X dot YZ or say B producing say PQ dot R like that. So, if I have

got say two items that means, I could have I have arrived to this state either by either of

these two cases; like I have seen a string which is which is derivable from X and now I

am expecting to see a string which is derivable from YZ or I have seen a string which is

derivable from PQ and now I am expecting to see a string which is derivable from R.

So, this way, so all the items that you have in a state. So, that they will tell us that they

will give us enough hint about the type of string that we have seen so far and the type of

string that we are going to we are expecting next to see. So, based on that we have to

take a decision, like at this point; so if the next input is such that so this one survives. So,

X producing YZ survives. So, will be going to another state where it will be it will be

advancing input and it will expect some string that way.

On the other hand, if the next input is such that so this alternative survives ok. So, this is

the this is not in that case, it will be coming to a state where it will be doing like this.

Now if the parser cannot take any decision like, then of course, there will be an error. So,

shift-reduce conflict or reduce-reduce conflict can occur. So, we will see that as we

proceed through this slides. So, this is the meaning of A producing X dot YZ and that is

we have already seen is a string derivable from X and then, we are expecting to see a

string which is derivable from YZ.

(Refer Slide Time: 20:39)

Now, how do we construct this LR 0 items ok. So, canonical LR 0 items, item sets,

because it is not item. So, item sets because each of them each of this thing like A

producing dot something. So, that is a, that is an item as we have seen in the last slide.

So, the all of these are items. So, all of these are items.

(Refer Slide Time: 21:01)

So, when we say a set of items, so, this is basically a collection of items that we had like

A producing X dot YZ; so, B producing P dot QR. So, these are all; so, the individually

they are item. So, this collection of items so that is called set of items and that will

constitute a state.

So, we see that um. So, how to construct this LR 0 item sets? So, first thing that we have

to do is to augment the grammar by another rule S dash producing S ok. So, why do we

do this thing? So, previously we have a, we had a grammar that started with S and all

these rules were there. So, in the ultimate production or that parse tree that is produced.

So, at the root we had got S and then from here everything is derived. So, this is there are

lowest levels. So, we have got all the terminal symbols. So, what we are doing? So, we

are adding another rule is just producing S.

So, why do we do this? We do this because when the parser will try to do this reduction S

to S dash; then, we know that we have seen the we see we have been successfully parse

the whole string. So, that is the idea of adding this extra production is just producing S

into this grammar set G and call it an Augmented grammar. So, we augment the grammar

G by adding the rule is just producing S; then we construct the closure of item sets. So, if

I is a set of items, closure I is a set of items constructed from I by this rules.

So, at every item of I to closure of I and if A producing alpha dot B beta is in closure of I

and B producing gamma is a production, then add B producing dot gamma to the closure

of I. So, this is how will be doing the closure. So, suppose we have got a grammar like

this E dash producing; so, this is that augmented ETF grammar. So, we have got this

original grammar had these three rules E T and F and we have added another rule E dash

producing E add as the extra rule.

Now, say I 0 that is items item set 0. So, this is this was having the only one rule E dash

producing dot E. So, this is for the whole graph this is for the situation where I have not

yet seen anything. So, I am expecting to see a string which is derivable from E. So, E

dash producing dot E. So, when I take closure of this, so by applying this rule. So, you

see we have got E dash producing dot E. So, if you compare with this.

(Refer Slide Time: 24:07)

Then, alpha is epsilon; then B is E; B is equal to E and beta is also epsilon.

So, comparing with this, now it says that whatever we have so B producing gamma; so,

B producing gamma; so, this rule survive. So, E producing E plus T and. So, if I do that,

then it says that B producing dot gamma should be added to closure of I. So, E producing

dot E plus T should be added to the set. So, E producing dot E plus T is added, then this

E producing T, this also survives by the B producing gamma as per for this rule. So, E

producing dot T is also added. Now, as soon as E producing dot T is there ok, Then again

so this rule has to apply.

So, here alpha equal to epsilon B equal to T and gamma equal to epsilon and then, sorry

beta equal to epsilon; beta equal to epsilon and then it says that B producing dot gamma.

So, T producing dot T star F and T producing dot F. So, these two are added to the set

and as soon as this F T producing dot F is added. So, based on that this F producing dot

within bracket E and E at the F producing dot id. So, they are also added to the set. So,

this way I can compute the closure of this particular set E dash producing dot E and that

will constitute one state of items.

So, I 0 is the initial state of the parser where it starts with E dash producing dot E and

takes the closure of that particular item to get the whole all the items in that set. So, in his

way, so we can construct the items.

(Refer Slide Time: 26:05)

The another part of is to construct the Goto. So, Goto I, X. So, this is defined for an item

I for an item I. So, on some grammar symbol X, we can define a Goto. So, if I is an item

set and X is a grammar symbol is a closure of all the items a producing aX dot beta,

where a producing alpha dot X beta is in I. So, it is basically since a producing alpha dot

X beta is in the item. So, from this if I get X, then what we are planning to do so that is

the thing.

So, if you if you get an X naturally you will be coming to a state where a producing

alpha X dot beta will be an item because if you have seen X, then you will be expecting

to see a string which is derivable from beta. So, this will be calling Goto I, X. So, the

Goto. So, this is the set I; this is X. So, Goto I, X is this set and you take the closure of

this. So, to get all the items in this state. So, we have to take the closure of that one. So,

this is an example like say this I 0 is the state which is I 0 is the state which is E dash

producing dot E and the closure of that. So, this is the set of items that we have.

Now, from here on E, so from this rule you see the E dash producing dot E. So, if you

see E, then you will be going to an item E dash producing E dot. So, E dash producing E

dot. So, that is one possibility and from these item, if you get an e you will come to a

configuration E producing E dot plus T ok. So, that is the thing. No other rule has got a

dot before E. So, they will not be coming in the set I 1. So, in; so, now, in the set I 1, you

see after dot there is no non terminal. So, naturally I told nothing will be added even if I

take closure of I 1.

So, I one remains this set only. What about I 2? So, I 2 is on T. So, on T if we; so on T if

we go so similarly we will get E. So, this should not be E dash. This should be E. This

should not be E dash, it should E. So, E producing T dot and from this rule, I will get T

producing T dot star F and again the same thing that we do not have any non terminal

after dot. So, the closure does not have anything; only these two item survive and then I

can say on so any other symbol like this open parenthesis is there. So, F producing dot E;

so on open parenthesis, so it will come to a configuration where a producing open

parenthesis dot E closed parenthesis.

So, this is the item and since now you have got a dot before this E. So, you have to again

scan the grammar rules to see what may be the situations. So, they as you know that the

grammar had this production rule E producing E plus T. So, this has got dot E. So, I have

to add this E producing dot E plus T in the closure set; then E producing dot T in this set

and as soon as e producing dot is there. So, T producing dot T star F will be there, T

producing dot F will be there, F producing dot within bracket E will be there and F

producing dot id will be there. So, in this way you can construct the set I 4 ok.

So, this way for all this from a particular state. So, you can define your Goto’s and on

different terminal and non terminal and accordingly, you can derive new states that the

parser can go.

