
Compiler Design
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 25
Parser (Contd.)

(Refer Slide Time: 00:15)

So, in our last class we were looking into the shift reducing parsing policies and we have

seen that there are four actions that can occur with shift reduce parsing, shift reduce,

accept and errors. So, these were the four operations that a shift reduce parser will do.

Now, many a time we will see that it may happen that there will be conflict in because

the as depending upon the grammar the parser may not be able to decide uniquely

whether to do a shift operation or a reduce operation. So, that is known as a shift reduce

conflict.

So, this is that shift reduce conflict. So, parser cannot decide whether to shift or to reduce

and there is another conflict which is known as reduce reduce conflict where we can

there are more than one rule by which we may try we may do the reduction. Of course in

future what can happen is that as you see more tokens, so maybe one of these reductions

are valid.

So, as a result if you do not do enough look ahead. So, there will there will be conflicts

and those conflicts cannot be resolved at the first level it itself. So, that type of situation

will give us reduce reduce conflict. So, if we want to modify the grammar for removing

this conflicts that is better if not then we have to take some default action. And the

default action for shift reduce conflict is doing a shift and for a reduce reduce conflict the

default action is whichever reduction rule comes first in the set of production rules.

So, that will be taken as the rule by which to do the reduction. So, there cannot be any

shift shift conflict because in both the cases we are going to shift to the next input

symbol. So, there is no problem with that. So, now, there is nothing like shift shift

conflict and shift accept or reduce accept. So, this sort of conflicts also cannot occur

because there we are already in the accept state. So, there is no further action to be taken

Now, let us take some example and try to see how this shift reduce conflicts it can occur

like in this case. So, what we have is say this particular grammar then if else grammar.

So, if statement producing a producing if expression then statement or if expression then

statement else statement or other statements; now see at some point of time the situation

may be like this that in the stack we already have these tokens.

If expression then statements so up to this much we have seen, so in this expression and

statements. So, these are non terminals and if and then they are terminal. So, as we know

that the stack can contain the all grammar symbols both terminals and non terminals. So,

suppose at some point of time this is the situation where statement is at the top of the

stack. And then the next input that we have is the else, next token that we have is else.

Now what to do? So, one possibility is that we so this else is a part of this if then

statement. So, this else has to be shifted into the step. Other possibility is so it is so there

was a nested if. So, there the situation is like this. So, there was a there is a nested if. So,

I have got some if expression then S 1 else S 2, so this is one possibility. Other

possibility is that if E then say if E 1 then S 1 if E 2 then S 2 else S 3.

So, this is the situation on which there will be a shift reduce conflict because when we

see these particular else. Now what to do? So, whether it should be shifted because

whether it is giving to it is going to give me this if then else statement or. So, I will

reduce up to this, I will reduce up to this, and these else becomes a part of this outer E

outer if. So, thus so that is the conflict ok. So in that case the parser will not be able to

take a unique decision whether to do a shift or a reduce.

And as I said that default action is to do shift. So, if you shift it then what happens is that

this else S 3 so, this becomes a part of the inner most if. So, and most of the

programming languages they also tell that way that the else is always associated with the

inner most if and in that case shift is a valid action. So, that is one example of shift

reduce conflict. Next we will be looking into the reduce reduce conflict.

(Refer Slide Time: 05:01)

So, like this suppose I have got a grammar that has got both that has got both so, this is a

procedure call. So, this is a procedure call and then this may be some array list, this may

be an array. So, if there is a procedure call so say proc 1 there I can pass this parameters

say x, y and z maybe it has got 3 parameters. Now there may be another array Ar and

there also I have got the, I have got the arguments or the array indices they are also

expressions. So, that is also say x, y, and z some expression.

Now, in so this x, y, z as far as tokens are concerned so, all of them will be taken as id.

So, in one case you have got this situation that id followed by id followed by ideally I id

followed by this parameter list where this parameter list is again an expression. So, this is

parameter list giving parameter and the parameter is ultimately giving id, so ultimately it

is giving id comma id like that. And other situation is that we have got this array and that

after that array also we have got this array name is coming as id. And then we have got

this expression list which is the array indices. So, these array indices so they also come

as id.

Now, if you at are at a situation like this. So, we have seen id within bracket id and the

next symbol is a next token is a comma. Now what to do? So, there can be one possible

reduction like this by this one parameter giving id and there is another reduction

expression giving id. So, which one to do we really do not know. So, until and unless we

know that very recently we have seen a procedure call then in that case this reduction

should be by this.

And if you on the other hand if you assume that very recently we have seen one array

call array array name as the portion before the open parenthesis then we know that this is

going to be an expression list. So, you should do go by expression producing id. So,

there is a confusion so just by looking into this top of the stack and this comma you

cannot take a decision by which rule to do the reduction. So, this gives rise to reduce

reduce conflict.

So, these conflicts are to be avoided because if a grammar has got this type of conflicts.

Then in the parsing process then the parser will not be able to proceed properly and there

will be difficulty in parsing the input sequence. So, default rules are there, but it is not

mandatory that default rules will always be play applicable. So, depending upon the

language, so they may not be applicable also. So, we have to be very careful about these

conflicts. So one of the basic responsibilities for this parser designer is to modify the

grammar so that this conflicts can be resolved.

(Refer Slide Time: 08:19)

So we will be looking into two types of bottom up parsing strategies one is known as

operator precedence parsing and another is a class of parsers known as LR parsers out of

these two operator precedence parsing this is very simple. So, for a particularly for

language that just accept expressions; so, basically the expressions expression grammar,

so they can be parsed using this operator precedence parsing.

So, we will see there are certain rules that will define what is an operator grammar and

all. And in general other parsing method so we have got this LR parsing and this LR

parsing we will see that it can further be divided into number of categories. We will look

into something called SLR or simple LR parsing then we will look into something called

canonical LR canonical LR, so which is more generic in nature.

So, SLR is pretty simple out of these three alternatives that we have in error parsing SLR

is going to be pretty simple and many a times. So, we can we can construct the parser by

hand. On the other hand this canonical LR. So, it is difficult to construct by hand and it

has got a large number of states compared to an SLR parsers. So, it has got a large

number of states.

On the other hand this a LALR there is another parser known as LALR which is a full

form is look ahead LR. So, this parser, so this will have less number of states in fact, the

number of states that LALR parser will have is same as the number of states that you

have in SLR, but it can be more powerful than the SLR, so that way it is better.

So, most of the automated tools that we have that we have talked about previously like

Yak, Bison etcetera; so, they generate LALR parser for a grammar; however, LALR is

difficult to learn for our class. So, we will be we will be first learning SLR and then go

towards the other categories. So, let us start with this operator precedence parsing.

(Refer Slide Time: 10:31)

So, operator precedence parsing is applicable for operator grammars. So, a grammar will

be send will be said to be an operator grammar. If it does not have any epsilon transition

and in no production rule right hand side you will have two adjacent non terminals like

say this particular grammar, so E producing E of E. So, you see this operator so, this is

this operator we can mod. So, this grammar whether it is it operator grammar so it is not

an operator grammar because you see this E and op. So, they are two non terminals. So,

they are appearing side by side. So, this is not a operator grammar. So, this is not

operator grammar

However we can modify this grammar a bit we can modify this grammar a bit and we

can write it like this. So if we substitute this o p in the first rule, so you get a grammar

like this and here you see we do not have this situation that is two adjacent non terminals

so that condition never occurs. So, it is always separated by a terminal symbol. So, this is

an operator grammar and also it does not have any epsilon transition. So, this is an

operator grammar. So, this is fine. So, we can use this grammar for operator precedence

parsing.

So, once so given a grammar you first check whether this is an operator grammar or not

if it is not an operator grammar we have to check by doing some simple modification to

the grammar is it possible to convert it into an operator grammar. So, if we can do that

then we can try to frame the operator precedence parsing table and follow the operator

the operator. We can follow the operator precedence parsing.

(Refer Slide Time: 12:25)

So, what do you mean by precedence of operators? So, from our mathematics classes we

know that whenever we have got some operator, so there are some precedence. For

example, addition and multiplication out of that in general multiplication has got the

higher precedence than addition. So, in case of grammar so we will be talking about

precedence between the terminal symbols; so, suppose a and b they are two terminal

symbols. If a has higher precedence over b we will denote it like this. So, this is just a

notation. So, we will read it as a a a has higher precedence than b.

Another possibility is if a has lower precedence over b. So, we will be writing as a less

than then a dot then b made and we will read it as a has lower precedence than b. And if

a and b are of equal precedence then we will be writing like this a with a dot on the on

top of an equality sign and then b. You see that many a times for our for the sake of

simplicity we will simply write simply say a greater than b or a less than b like that or a

equal to b.

But in general we will be we will be following we will be meaning this thing that is

when I say greater than b. So, we I really mean that a is of higher precedence than b. So,

so these are certain rules like I identifier has got higher precedence than any other

symbol, dollar has the lowest precedence. And if two operators have equal precedence

then we check the associativity rule of that operator. So, this is in general for

expressions. So, this is true for expressions that I any identifier it will have higher

precedence over any other symbol and the dollar will have the lowest precedence and we

have to follow associativity to decide the precedence.

So, if two operators are equal precedence like say a plus b plus c. So, a plus b plus c then

this a b a a. So, this plus and this plus they are of equal precedence. So, we have to

follow associativity rule in that case. So, anyway so for grammars that involves only

arithmetic expressions. So, these rules are valid, but in general how to decide this

precedence and also that we will see as we proceed in the lecture.

(Refer Slide Time: 14:59)

So, this is a precedence table; so, following the previous rule that we have so we can say

that this is the precedence rule. So, I we said that id has identifier has got higher

precedence than any other symbol. So, here is so identifier is having higher precedence

than any other symbol. Then it says that in case of plus so plus has got lower precedence

than identifier and then this is I have to follow associativity. So, if I have got a plus b

plus c then we do a plus b first and then do plus c.

So, plus has got the higher president over plus, similarly plus has lower precedence than

star and plus has got higher precedence than dollar. So, all the terminal symbols they

have got higher precedence than dollar. Similarly star it has got multiplication it has got

lower precedence than identifiers, higher precedence than plus, higher precedence than

star, and higher precedence than dollar. And dollar has got lower precedence than

everybody accepting dollar. So, this is the precedence table. So, this particular table we

have framed by taking into consideration the arithmetic expression rules.

Now we will see later how to do it for a general grammar. Now, suppose we have got an

example to be parse. So, id plus id star id. So, what we do? So, we put a dollar at the

beginning and a dollar at the end and between any two terminals. So, we insert the

corresponding precedence where precedence value.

So, if you consider this rule dollar and id. So, dollar is less than id. So, we are put less

than then id and plus. So, id is greater than plus. So, this is greater than so that way we

do it. Now it is said that anything that comes within this less than and greater than. So,

that is a handle. So, this is a handle similarly if we have got this thing. So, this part will

be a handle. So, that way it can identify the handles in the language in the thing.

(Refer Slide Time: 17:03)

So, so basic principle for this parsing is like this we scan the input string from left to

right and we try to detect the greater than. So, this string that we have so I scan from left

to right and try to see where first this greater than occurs. So, this is the first greater than.

So, we detect the greater than and put a pointer on its location. So, we keep a note that

we have seen a greater than at this point. So, keep a note will give a pointer here and then

now we have to scan backwards till we reach the previous less than.

So, this one is done so we scan backwards to see what is the, we scan backwards to see

where this less than appears. And once we find it the string between this less than and

greater than is the handle we replace this handle by the head of the respective production.

So, this handle will be replaced by E now so this is this. So, because E producing id was

a rule, so E producing id was a rule. So, this handle will be replaced by E now. So, and

then we repeat this process until we reach the start symbol. So, this way the parsing

process will continue like this.

(Refer Slide Time: 18:31)

So, this is the overall algorithm. So, initialize the stack to dollar and we then we consider

a at any point of time what we do is that we have got the stack. So, say we look into the

top of the stack and if this is the input stream so we look into the input symbol. So, we

compare this top of the stack element with the first input symbol. So, here we have put a

dollar.

So, we compare dollar with the first input if U be the topmost terminal in the stack. So,

this is the so what is the topmost terminal in stack so that we find out and V is the next

input symbol. So, there may be some there may be some non terminal symbols, but

suppose this is the topmost terminal symbol that we have here. So, this is our U, and this

is the V. So, we compare between U and V so, if U is of equal precedence than dollar, if

U is dollar or V is dollar in that case we have successfully parsed the string. So, we will

come out.

If not if U is less than V U is of lower precedence than V or U is of equal precedence

than like V then we will be shifting V into the stack. So, in that case V will be put into

the stack and we will be advancing the input pointer to the next place and if U is greater

than V precedence of U is more than the precedence of V then we pop out the topmost

symbol ok.

Then we were from the stack call it V from the stack until the top of the stack is less than

V. So, whatever symbol we pop out. So, until that popped out symbol is having a less

than relationship with top of the stack has got a less than relationship with V. So, till that

much we pop out. So, that will be popping out enough entries to that is that will pop that

will be popping out a complete handle. Otherwise so if that also does not happen then

there is an error.

So, error condition occurs when we some table entries are undefined like say here in this

table, so id id is undefined, so and as we can in intuitively understand. So, if there are

two identifiers coming one after the other. So, that is meaningless because in an

expression between two identifiers some operator must be there. So, if the operator is not

there; that means, there is some error that is there is some error. So, this entry is a is an

error entry. So, we can have many such error entries. So, if you find that there is no

precedence relationship between U and V; that means, there is an error.

(Refer Slide Time: 21:11)

So, let us see how this operation parsing process works. So, this is our input string, so id

plus id star id. So, this is the input string so we have put a dollar at the end. So, we have

put a dollar into the stack and then the rule says that you compare dollar with id and

since you compare dollar and id. So, this is the a parsing table. So, dollar is less than id.

So, dollar less than id so in that case the action is to shift id, so id has been shifted into

the stack now it is id plus.

So, id plus so id is of higher precedence than plus. So, you so it is I so it is of higher

precedence than plus. So, in that case it will be popping out the entries from idea from

stack. So, id is popped out and the popped out symbol id has got top of the stack is dollar

and that popped out symbol is id. So, if you look into this thing so top of the stack should

have a less than relationship with the element popped out ok; so, that should be that case.

So, here you see when this id is popped out. So, dollar will be on the top of the stack and

dollar has got less than relationship with id. So, it stops so this id is just popped out now

between dollar plus. So, dollar plus dollar is of lower precedence than plus. So, plus will

be shifted into the stack then we have got id. So, plus id so plus is of lower precedence

than id. So, id is pushed into the stack. So, we have got star id here so, this id and star so

id is of higher precedence than star.

So, we have to pop out entries. So, we pop out this id and so when we pop out between

id and plus. So, id is of a higher prep, so as top of the stack now is now containing plus.

So, plus is a of lower precedence than id, so it this popping out operation stops. So, we

have got plus here and star here. So, between plus and star plus is of lower precedence

than star so star is pushed into the stack then between star and id, star is of lower

precedence than id, so id is pushed into the stack.

Now, between id and dollar so id is of higher precedence than dollar. So, so it will be id

is of higher precedence. So, I have to pop out some entries so id is popped out between

our now star is on the top between star and id star is of lower precedence than id. So,

popping out operation stops now it is now the top of star and dollar so between the star

and dollar. So, star is of higher precedence than dollar. So, it will be popping out the star

star from the stack.

So, top of the stack contains plus and the symbol popped out is star and plus is of lower

precedence than star. So, the popping out stops so it comes to this configuration between

plus and dollar plus is of higher precedence plus is of higher precedence than dollar. So,

it will be popping out the plus symbol from the stack.

Now the top of the stack contains dollar and popped out symbol is plus. So, dollar is less

than plus, so the popping out stops. So, at that at this point top of the stack contains

dollar and the input is also dollar. So it comes to an accept state and the whole parsing

process ends. So, if when you come to a situation that the top of the stack contains dollar,

and the input is also having dollar; that means, we have seen the complete string.

So, it is called it is a shift reduce parsing because sometimes we are shifting the symbol

whenever the next symbol that is coming on the input is whenever the top of the stack is

of lower precedence than the next input symbol. So, we are pushing the symbol into the

stack and whenever so that is a shift operation and whenever we are getting a situation

where top of the stack is of higher precedence than the next input to come.

So, basically in the conceptually you can view it like this that as if. So, if this is my stack

if this is my stack at some situation. So, we have got these symbols and there is that less

than and greater than relationships. So, whenever the top of the stack is of lower

precedence than id so it has been pushed into the stack. So, at any point of time if you

have this all these symbols so they are of so there we have got the situation that this top

of the stack is of lower precedence than id. So, this id the next symbol that has come, so

this is of higher precedence; so, you have got a situation like this ok.

So, as if they are all of higher precedence then at some point of time if you get a symbol

that is going to do it like this. So, whatever comes in between with all these equalities

and all so this entire part is going to be one handle. So, this entire part is going to be one

handle. So, this portion is popped out this portion is popped out from the stack and it is

so that that is the reduction that we do. So, we can output it is explicitly not written that

we do a reduction by that.

So, essentially it is doing a reduction by that rule and then we can, but then we can again

proceed from this point. So, this way where so we basically try to figure out the situation

where we have got in the stack a condition like this and in between we have got all

equality things. So, this whole part becomes a handle and that handle is pruned by doing

the reduction by the corresponding grammar rule.

