
Compiler Design
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 24
Parser (Contd.)

So, next we will be taking on Parsing example of this Boolean expression.

(Refer Slide Time: 00:25)

Suppose we take the exam id or id, id or id and not of id. Suppose this is the Boolean

string that is given B or id and not of id ok. Now as we know that this predictive parsing

processes it maintains stack and the input. So, we will be writing it like this, so there is a

stack part there will be the input as it is there and then the corresponding action part ok.

So, initially stack top will contain the start symbol of the grammar B and the input will

be the whole string id or id and not id, this whole thing will be there in the input.

http://mcehassan.ac.in/department/ee/

(Refer Slide Time: 01:37)

Now we have to see what was the rule for B id? So, if you look into this grammar this

table it says B id says you have to go by B producing TB dash by this rule ok; so, by B

going by B producing TB dash. So, it says parse B producing TB dash and they will be

put into the stack. So, B is popped out from the stack and the stack will now contain B

dash and T and input remains unaltered same as this one.

Now, I have to see what is T id? So, T id T id is stilling go by T producing F T dash ok.

So, it will be so it says that parse by T producing F T dash. So, this T is going out of the

stack now the stack will have B dash, T dash and F input remains unchanged. So, B dash

T dash F now F now stack top is F and the input symbol id ok. So, F id you see F id says

that you go by F producing id. So, it says that you go by F producing id and as a result it

will be B dash T dash id, this remain same and then this. So, these two ids will now

match this and this id will match. So, naturally the corresponding action is advance input

pointer.

So, now the situation that we have is B dash T dash on the stack and or id. So, there is a

dollar at the end we input is assumed to be ended by a dollar and not and dollar, so that is

the situation. Now I have to see what is T dash or. So, T dash or is T dash producing

epsilon. So, it says that the corresponding thing is T dash producing epsilon. So, T dash

will go out of the stack, so now the stack will become B dash and input will be like this

only.

Now B dash or so B dash or is telling me go by B dash producing or TB dash. So, it says

the action is B dash producing or T B dash. So, they will be put into the stack. So, this B

dash goes out and this B dash comes in, so B dash T or input remains same. So, now

these 2 ors match, so we advance the input advance input. So, this or goes out now the

stack contains B dash T and this has got id, input has got id and not id dollar fine.

Now, T and id, so T and id you see T and id says go by T producing F T dash this rule.

So, it says go by T producing F T dash. So, this T goes out of the stack and T dash and F

they are put into the stack input remains unchanged. Now F id, F id is we have seen

previously that it will tell me to go by this rule F producing id. So, F will be popped out

from the stack and this id will come in input will remain unchanged. Now these 2 ids

these 2 inputs will these 2 ids will match. So, the action will be advance input it will be

advance input. So, this stack will become B dash T dash and the input will now have and

not id dollar.

Now, I have got T dash and now T dash and it says it go by T dash producing and F T

dash. So, it says go by T dash producing and F T dash. So, this T dash is popped out from

the stack then this new T dash F and they are put into the stack input remains unchanged.

So, again these 2 ands match, so we have to advance input we have to advance input. So,

it becomes B dash T dash F and then this and is has been consumed. So, it is not id

dollar.

Now, F and not F and not says you go by F producing not B. So, it says go by F

producing not B. So, this F is taken out from the stack. So, B dash T dash B and not input

is as it is. Now these 2 not’s will match, so it will be advancing input; it will be

advancing input. So, this will become B dash T dash B and then it says that I have got id

and dollar fine.

Now, B id, so B id says that go by B producing TB dash this rule. So, it says go by B

producing T B dash. Now so this B will be going out, so the stack will contain B dash T

dash B dash T and then this is id and this is dollar. Now T id so, T id says go by T

producing F T dash ok. So, it says go by T producing F T dash.

So, if we do that then the stack content will become something like this. This T goes out

and this T dash F comes to the stack and this remains the input remains unchanged. Now

I have got F and id and F and id will tell me to go by F producing id. So, this will be

modified to B dash T dash B dash T dash id input will be this one. So id, id will match so

I will be advancing the input advance the input pointer.

So, my new stack will be B dash T dash B dash T dash this will be the new stack and

here the input will be dollar. So, T dash dollar, so T dash dollar says go by T dash

producing epsilon. So, it says go by T dash producing epsilon. So, T dash will go out

now the stake will be B dash T dash B dash and dollar and this will take this is a B dash

dollar tells me that go by B dash producing epsilon. So, this goes by B dash producing

epsilon, so this B dash goes out. So, I have got B dash T dash and dollar.

Now, again T dash dollar will tell me T dash producing epsilon. So, this says you go by T

dash producing epsilon. So, T dash will go out now I will have B dash and dollar and

here it says B dash dollar says go by B dash producing epsilon. So, go by B dash

producing epsilon, so this B dash goes out. So, stack is now empty. So, this stack is now

empty and this has the input pointer is also at dollar; that means, the given string is a

valid string ah. So, by using this predictive parsing method, so we can construct the

corresponding parse tree.

So, this way given a grammar, so you can first construct the first the first and follow sets

and from there you will be able to construct the parsing table and once the parsing table

is made, so this parsing process is automated. So, you whether to check whether a given

string belongs to the language or not? So, you can have this parsing algorithm. So, which

will be run and then you can find out whether it is input is come in to dollar input entire

input is consumed and the stack is also empty.

So, if you a come if you can come to that configuration staring with the configuration

that stack has the start symbol in it and the entire input is there with the pointer at the

beginning of the string. So, if you can come to that configuration then you can be you

can tell that the string is accepted by the language. So, next we will be looking into a

new topic which is known as bottom up parsing. So, bottom up parsing, so this top down

parsing that we looked into. So, this actually try to construct the parsing parse tree

starting with the start symbol of the grammar and from there it was trying to go in a top

down fashion to derive the final string. So, another approach that we can have is that we

can start constructing from the bottom. So, starting with the input, so we try to

constructing from the bottom and then we can ultimately merge onto converge onto the

start symbol of the grammar.

Now, the problem with the top down parsing was that so you have to predict like at some

point of time looking at the next input symbol. So, if it is l l 1 grammar, so looking at the

current input symbol only you have to tell like which rule to follow that sometimes

becomes difficult. And if you are if you try to modify that look ahead if you want to

make it l l k then the parser will become very complex.

So, that way bottom up parsing is in some many cases bottom up parsing will be better

because it will be able to construct from the bottom so it knows the input string that is

there and it tries to construct from there. So, that way many many a time you will find

that for certain grammars. So, you will be able to formulate the bottom up parsing

algorithms, but not the top down parsing. So, the parsing table you can you can construct

for bottom up parsing but not for top down parsing. So, that makes bottom up parsing

more powerful than the top down parsing.

(Refer Slide Time: 12:49)

So, to start with this bottom up parsing strategies to the construct parse tree for an input

string beginning at the leaves that is at the bottom most level of the parse tree. So, parse

tree at the leaf level it has got only the terminal symbols that is the given the input string.

So, it will let us start with that bottom level thing and then try to construct the parse tree

and finally, leaching the root so which is supposed to be the start symbol of the grammar.

So, if you can do this, so if you can have a if you can show that the entire string can be

reduced to the start symbol of the grammar then we say that the string is accepted by the

language. So, an example suppose we have got that expression grammar which is given

by this E producing E plus T or T T producing T star F or F and F producing within

bracket E or id. And we try to see whether id star id is a valid string of this language or

not.

So, we will do it in a bottom of fashion. So, first id will be replaced by F ok. So, we get

this part then this F can be replaced by T ok. So, this is we have got T into id then this

second id is replaced by F and then this T into F. So, that part is replaced by F then T into

F is that F F is replaced by T it should be F should be replaced by T here and there is a

jump step jump at this point. So, ideally they should not be like this. So, this E should

give me T and T should give me F because E cannot give me F. But anyway so this is

(Refer Time: 14:45) are make the space less. So, it has been shown like that, but they

should be ideally like this E to T to F.

So, you see starting with the input string. So, we can construct the entire parse tree and

go to the root the start symbol of the grammar. So, if you can do this thing then we say

that we have got a bottom up parsing strategy for the grammar.

(Refer Slide Time: 15:15)

So, next so they are so this bottom up parser. So, they are also known as shift reduce

parsers. Why it is named? Because these parsers they work on two operation mainly on

two operations one is called a shift operation, another is called a reduce operation. So,

that is a general idea is to shift some symbols of input to the stack until we can find a

situation where reduction can be applied.

So, we go on shifting some input symbols on to the stack and then try to replace that part

replace some part of the stag by applying some reduction. And each and in each

reduction step a specific substring matching the body of a production is replaced by the

non terminal at the left hand side of the production.

For example, if I have got a in the stack if you find that you have got say T star F

available in the stack and in the grammar there is a rule like E producing T star F. Then

what we do? So we can replace this part of the stack by the symbol E, so that is exactly

what is said here. So, we have at each so that is a reduction. So, we reduce some part of

the stack by a non terminal.

So, whatever comes on the left hand side of the rule by which we are doing the

reduction, so the stack now will now contain that symbol. So, stack will now contain that

symbol and the portion on the right side. So, they will be they will be used to replace the

portion of the stack. So, naturally the decisions the key decisions during bottom up

parsing are about when to reduce? And what which production we should apply for

reduction? So, like shifting so I can just get the next input and shift it into that the step,

but I have to take a decision that at some point of time I will apply the reduction

operation also the reduced operation also.

So, when to you apply this reduce? So, if you are not, but doing it correctly then you will

be reducing at arbitrary point. So, that it will not be able to generate the parse tree even if

the string is correct. So, that so I have to do it judiciously at which point I do the

reduction and also there may be several rules by which we can do a reduction ok.

For some for some point of time so it may so happened that if I take set top most 3

symbols there can be reduction. And there can be two different rules by which we can do

that reduction or if I look into top most 5 symbol so I can do a reduction. So, that way I

have to take a decision like of which production rule we apply for doing the reduction

and a reduction is a reverse of a step of derivation.

So, in a derivation we are going in a top down fashion. So, we are starting with the star

start symbol and then we are deriving the sentential forms till we are at the input stream

and in the reduction process. So, this is just the reverse we are starting at the input stream

and converting some parts of it into non terminals and ultimately the entire thing reduces

to the starts symbol.

So, this is just the reverse of the derivation process and the goal of bottom up parser is to

construct a derivation in reverse. Like say actual derivation is say for this id star id the

derivation is E to T to T star F to T star id to F to id to id star id. So, but the bottom up

parser it will do it in this the direction. So, it will start with id star id then it will find this

reduction of id to F, then it will find this reduction of F to T, then it will find this

reduction of id to [FL], then it will reduce this T star F by T and then finally, it will

reduce this T by e, so that is the thing. So, does it in the reverse direction compare to a

top down parsing.

(Refer Slide Time: 19:23)

There is a concept called handle pruning. So, what is a handle? So a handle is a substring

that matches the body of production and whose reduction represents one step along the

reverse of a rightmost derivation. So, for example if I have got say this particular right

sentential form id star id, then this id can be a handle because there is a production rule

which says F producing id and this right hand side matches with this id. So, this id part is

a handle.

Similarly this F producing F F into id then this F is a handle because there is a rule which

says T producing F. So, this id is also can be a handle by because there is a rule like F

producing id, but the problem is. So, it will give rise to something like F star F and then

it may not be giving the actual a rightmost derivation. So, a handle it is with respect to a

string.

So, it is not only that it should be the right hand side of some production, but also it

should be part of the derivation process, it should be part of the rightmost derivation

process arbitrarily we can take. So, if we can identify proper handles then we will be able

to identify the proper derivation in the reverse. So, this rule, so this will be using this LR

parsers or this bottom of parser; so, they will be using this handle pruning strategy ok.

(Refer Slide Time: 20:55)

So, this is the general philosophy of a stack reduce shift reduce parsing policy. So, we

will be using a stack to hold grammar symbol. So, grammar symbols means the symbol

the terminals and non terminal, so both are grammar symbol. So, we will be having a

stake that will hold the grammar symbols and as a result handle will appear on the top of

the stack. So, if we have it like this, so if this is the stack. So, it has the grammar symbols

in it may I have got say a, b, then some e, s then say c, e, so like that again another e like

that.

Now, you see the where this capital uppercase letter. So, they are say non terminals and

the lowercase letter, so they are say terminals. So, this may be say some d this may be a

like that. So, they are at, so this stack can contain both terminals and non terminals. Now

what can be and handle like say this handle it will always appear on top of the stack. So,

I can have a handle which stands over so these three entries so a, b, e. So, if there is a

production rules like rule like a, b, e then we will say that this is matching the handle.

(Refer Slide Time: 22:29)

So, initially the stack will contain dollar and the input will be the entire input string w

and dollar. So, initially the stack has got dollar and this stack has got dollar and this input

id this is the input string w. So, we will assume that there is a dollar character at the end

of it, there is a dollar at the end. So, if the whole parsing root in it will start with this

particular configuration.

And then it will be an acceptance it will go to an acceptance configuration if at the end

you find that the stack has got dollar S in it and it the input is here the input pointer is

here. Initially input pointer was here and after this parsing process, so input pointer has

come to the end of the string and the stack contains S followed by dollar. So, if this

configuration can be reached.

So, starting with this configuration by taking actions corresponding to the input symbols

that you have in w; so, if you can come to this configuration then we say that this is this

is a valid string the given string w is a valid string of the language. So, in this way the

shift reduce parser server the basic actions are it will sometimes we will shift the next

input symbol on to the stack, sometimes it will pop out some entries from stack and

apply a reduction operation on them the reduce operation on then. So, these two things

will be doing. So, how do when do you take a shift decision and when do you take a

reduce decision. So, that will be depicting the design of the parser or the parsing policy.

(Refer Slide Time: 24:09)

So, this is a simple example. So, we have got 4 basic operations. So, we have just now

we have talked about shift and reduce there are two more operation one is accept and

another is error. So, accept is the situation where you have reached a configuration where

the stack top contains the start symbol of the grammar, and the input is also input pointer

is also pointing to dollar. So, that is the accept configuration.

And in between so if you are in a state where the parser does not know what to do the

parsing table or the parsing policy does not tell clearly like what to do in that case that is

an error operation. So, error operation so you can have some error message flashed or

you can take some error recovery measure, so that the parser can continue parsing

reporting the error.

So, let us take the same example the id star id. So, the initial configuration will be like

this the stack will be having only dollar and this id star id dollar. So, this will be the

input. So, right now we do not know how do we take the shift and reduce decision, but

suppose we know that we can we can choose we can make this actions we can make the

actions shift and reduce and the choice is done in this fashion as it is shown here.

So, suppose we take a decision to do a shift then what will happen this id will come to

the stack. Now the stack has got dollar and id with id at the top of the stack and the input

will have star id dollar. Then somehow we come to a decision that will be following this

reduction rule reduced by a producing id. So, this id will be popped out from the stack

and then this left hand side that is F so it will be pushed into the stack.

So, stack now contains dollar F, then looking at a F and star we take a decision that we

will be doing a reduction by T producing F. So, this F is taken out from the stack and T is

pushed into the stack. Now getting T and T at the top of the stack and star at the next

input so, somehow we take a decision that will shift this star into the stack. So, the star is

shifted into the stack and then this looking into this star and id this parser takes a

decision that I will do a shift operation. So, this id is shifted into the stack.

Now, id and dollar then somehow we takes a decision that I will be following a reduction

by F producing id. So, this is id will be replaced by F, then this T star then by F and

dollar looking at F and dollar. So, it will see it will take a decision that will reduce by T

producing T star F. So, ultimately so this way it proceeds. So, ultimately we are at a

configuration where we have got this start symbol E on the top of the stack and dollar at

the input pointer. So, at that point we accept the input ok. So, that is the corresponding

action is accept.

So, if there was an error in the expression they need some points so we will not be able

to have any legal activity. So, at that time so we will flash that there is an error at this

point. So, this can come to an error as quickly as possible. And in fact, this bottom up

parsing on advantages that. So, it can come to these errors quite fast. But of course, how

do you take this decision so that is the question ok. So, we will look into that as we

proceed through the discussions.

(Refer Slide Time: 27:49)

Now, handle will appear on top of the stack like say save this y z. So, this is the input; so,

this y so this stack has got this thing this alpha, beta, gamma so this is the stack. Now it

will find that this gamma. So, gamma will be replaced by B, so this gamma will be

replaced by B. So, there so you see that gamma gamma comes at the top of the stack and

that has been replaced by B.

Similarly, we have got this in the next step this y is shifted. So, this is B y, so this

becomes it become B y and then this B y this beta B y. So, this gives me a handle and

this beta B y is replaced by gamma. So, that way it can it can proceed ok. This is just an

example how this handles can come at the top of the stack.

(Refer Slide Time: 28:53)

So, there can be conflicts in the shift reduce parsing and there are two types of conflict

like one is called shift reduce conflict, another is called reduce reduce conflict. So, shift

reduce conflict means looking at the next input symbol and the top of the stack. So, there

may be two possible actions. So, we can shift it shift the next input or we can apply some

reduce rule we can reduce operation following some production rule and if the grammar

is such that we cannot identify a single operation.

So, both the operations appears to be valid the shift and reduce operation then that is

called a shift reduce conflict. Another thing is reduce reduce conflict so here the parser

does not know which rule to apply for doing the reduction. So, it say it find there some

reduction has to be done, but there may be more than one rule which qualifies for the

reduction that is the right hand side of more than one rule matches with the handle. Then

which rule to follow so that is reduce reduce conflict.

So, typical example is say this one. So, statement producing suppose we have got this

particular rule so this is the grammar that we have. Now in the stack if we have this

situation if expression then statement and in the input I have got else part. Now what to

do? So, if you are if so one possibility is that so it will be lead to if expression then

statement else statement type of thing so that is this one. So, in that case I should shift

this else into the stack. So, that is a shift operation.

Other possibility is that this. So, this itself maybe the and if then statement. So, if we so

we may try to reduce we may try to reduce by this rule statement producing if expression

then statement. So, this is a shift reduce conflict on the input symbol else. If the input

symbol is else and the stack contain something like this then it say shift it can give rise to

a shift reduce conflict.

So, we will see how to take care of this as we proceed through the classes. And this is we

will see that there are some of them can be handled or some of them can be resolved by

taking help of the precedence of the operators. Some of them can be handled by

modifying the grammar a bit and all that thing, but ultimately when you are designing

the parser the parser should not have any conflict. So, it is the compiler designer’s

responsibility to do something so, that the parser does not face this type of conflicts.

