
Compiler Design
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 20
Parser (Contd.)

So, the recursive descent parsing technique that you are discussing; so, there are some

problems. The first problem is that the general recursive descent parsing so, this requires

backtracking.

(Refer Slide Time: 00:26)

So, the point is that as I said that there may be alternatives. So, I suppose I have got 2

alternatives A producing alpha is an alternative and beta is another alternative. So, first I

will try with this rule A producing alpha now while doing this so, the input that we have

so, input pointer was say. So, this is my input sequence and the pointer was somewhere

here, when I was when I started the procedure for A.

Now, while trying out this alternative alpha, this input pointer has advanced to some

extent. So, it as gone to this and then suppose, we find that no A producing alpha is not

the correct option to try out. So, it does not derive the final string. So, we need to come

back and try the next alternative a producing beta, but how do we do this? Because by

this time the lexical analyzer so, it has advanced its input pointer already to this point.

So, it has to be taken back to this point before, we start this A producing beta alternative.

So, this is difficult because, we have to take back the input pointer to come back to this

point. So, that is what we you are telling it here, that the last code that we have seen for

the procedure A.

So, that needs to be modified to allow backtracking. In general form, it cannot choose an

appropriate production easily because, we may have this left recursion, left factoring and

also though it may be a left recursive grammar or they it may require left factoring. So, if

those are not done then I cannot make a top down parser strategy, recursive descent

parsing strategy using that grammar.

So, we cannot choose an appropriate option very easily whether to try out alpha or beta.

So, there is no immediate guidelines. So, even if this left factoring and left recursion

elimination has been done still, it may be difficult to make a wise choice between alpha

and beta. So, only when alpha fail so, we try out beta. So, exhaustively all the

alternatives maybe may have to be tried out. So, you need to try all alternatives; if one

fails the input pointer needs to be reset and another alternative has to be tried.

So, these I have just discussed. So, you need to take back the input pointer for the lexical

analysis tool to the point from where, we have to started the procedure A. So, this is

another issue and the recursive descent parsers they cannot be used for left recursive

grammar. So, if the grammar has got left recursion then we cannot use this recursive

descent parsing.

(Refer Slide Time: 03:12)

So, we will see some solutions to this strategies, this drawbacks in our next slides, but

before that we take an example suppose, we have got a set of production rules S

producing c A d and A producing a b or a. So, you see that we do not have any left

recursion here because, here it starts with a terminal symbol c, here also it starts with a

terminal symbol a. So, there is no left recursion. Similarly, there is no left factoring is

also required because, because we do not have any non-terminal big coming on the right

hand side.

So, it is not that I have got this a then something that you can take out a and like that

suppose the input that we have is c a d. So, the way it proceeds it first starts with first try

out we start with the a star symbol of the grammar and I do not have any option here

there is only one rule c A d.

So, it expands it by c A d, then it tries out the first alternative S producing a b. So, it if it

does this S producing a b then if you see that it has derived the strings ca bd, which is not

cad. So, it cannot be converted to cad. So, it will fail the parser the this when it tries does

this. So, it cannot go to the input string cad. So, it will not match. So, it will when

procedure for A is called, it will first call the actually when the procedure for S is called.

So, the procedure S is something like this.

So, consume c. So, it is consume c then it will called procedure A then it will be consume

d, it will be something like this and the procedure for A is something like this there are 2

alternatives, first alternative is consume a and then consume b. So, this is one alternative

and a other alternative that, we have is consume a this is a second alternative. So, first it

will try out the first alternative for a. So, this will be successful because, when it is c a d

initially the input pointer is here.

So, procedure for S is call so, it will consume c. So, input pointer will advanced it will

come to a now it calls the procedure A so, it comes here consumes a and then pointer is

advanced. So, it tries to consume b, but it finds that there is a d there. So, there is a

mismatch. So, it understand that this alternative is not a valid for this particular

derivation. So, input pointer is taken back by one position from where this procedure a

was called and then it will find the other alternative says consume a.

So, input pointer will be advance and then A part is done. So, it will come back to this

point and now it will say consume d from the procedure a. So, this will be consumed. So,

that will be the third thing and then it. So, it can proceed like that.

(Refer Slide Time: 06:29)

So, it fails at this point. So, it tries out the other alternative A producing a and giving c A

d.

(Refer Slide Time: 06:37)

So, this way this recursive descent parsing works, but sometimes we do not like this type

of backtracking because, then we have got the difficulty, because we have to see like

how much has to be taken back and all. So, this predictive parsing so, this is a recursive

descent parsing that needs no backtracking. So, it will be a recursive descent parsing

only, but without any backtracking. Suppose, I have got a rule A producing A 1, A 2, A n.

So, if the non-terminal to be expanded next is A then the choice of the rule is made on

the basis of the current input symbol. So, if we have got a number of suppose, these are

the alternatives A1, A2, A n. So, these are the alternatives.

So, which alternative to follow so, based on the current input symbols. So, it will take a

decision ok. So, if we can take the decision properly then we can make a predictive

parser for the grammar. So, if we cannot make a decision for all the productions then

predictive parser designed for the particular grammar is not possible.

(Refer Slide Time: 07:45)

So, in many cases it will be possible and in many cases it will not be possible. So, we

will see the situations for both. So, procedure for technique for designing this long

recursive version or predictive parsing mechanism is to make a transition diagram for

every rule of the grammar like dfa or nfa deterministic finite automata, non deterministic

finite automata. So, we make a transition diagram and then we try to optimize the

transition diagrams by reducing number of states yielding the final set of diagram.

So, we first draw a set of diagrams based on some optimization of the diagram. So, we

come to the final stage of diagram, whenever you are trying to parse a string, we

simulate the string on the transition diagram. So, as if we are making transitions to the

transition diagram using the inputs from the string, if we are we have consumed the input

transition after consuming the input, when you are consuming the entire input if the

transition diagram reaches an accept state then it is taken as parsed ok.

So, if we so, transition diagram like dfa and nfa it will have an some initial state and a set

of final states. So, if it reaches one of the final states after consuming all the inputs then

you will say that the parser has accepted the input.

(Refer Slide Time: 09:17)

So, we will take some example. So, suppose we have again take that expression grammar

E producing E plus T or T, T producing T star F for F F producing within bracket E or id

then after removing this left recursion and left factoring the rules will be something like

this E producing T T dash then T dash producing plus T T dash or epsilon F producing T

producing FT double dash and T producing star FT double dash epsilon.

(Refer Slide Time: 09:33)

And then T producing within bracket E id now, so this is so, this is the for the first one.

So, we have got a diagram like this E this is for E. So, produces it uses T and T dash. So,

on getting these 2 symbols, it will come to a final state similarly T dash. So, this is the

red is the red is the final state. So, on getting a epsilon. So, it can come to final state or it

can be it can be. So, this is our T. So, this is FT double dash then this is T dash.

So, T dash is actually this is something wrong. So, this should be plus this should be T

and this should be T dash and then these T dash, this is FT double dash then, these T T

dash producing this should be T double dash. So, this is T double dash producing. So,

this should be T double dash producing a star FT double dash or epsilon and then this

should be F producing within bracket E or id.

So, this is for F within bracket E or id. So, this is T dash. So, this should be plus this

should be T and this is T dash then T producing FT double dash that is all right then this

is for T double dash, T double dash producing epsilon and star this should be star FT

double dash and F producing within bracket E and id. So, this is our final set of transition

diagrams that we can have and then.

(Refer Slide Time: 12:50)

So, you can do some optimizations like starting with the star symbol. So on getting T, it

comes to this state and so, this is the rule for this is the rule for T. So, that T is again

coming back. So, you know coming back to the start state. So, if there is no expression

after this. So, it can come to the final state or if there is a plus symbol so, it can come to

this. Similarly, if for the for this f it can come to on getting epsilon, it can come here, but

if it gets F. So, it can come to this state and getting star, it can come back to this point

and again proceed on epsilon to the next state. So, this can be done.

(Refer Slide Time: 13:37)

So, how do you simulate it? We start with the start symbol of the set of diagram start

with the start state and if it is a terminal, we consume it and move to the next state, if it is

a non terminal. So, we go to the state of the dfa of the non terminal and return on

reaching the final state, when we return the final state of that non-terminal transition

diagram, we return to the start state and we return to the original dfa and continue

parsing.

So, this way when we are whenever you reach the any final state so, we come back to the

original dfa and continue parsing on completion of input when the input has been seen

completely. So, if we find that we have reached a final state then the string is

successfully parsed. So, otherwise it is not.

(Refer Slide Time: 14:30)

So, the problem that we have is that inherently it is a recursive parser. So, it consumes lot

of memory as the stack grows. So, we are calling the routines again and again. So, as a

result we are doing it by means of transition diagram, but it is taking lot of time it may

take lot of time, because of this recursive nature and to remove this recursion, we can use

one type of parser, which is known as LL parser, which will use a table for the lookup

procedure.

So, this LL so, these 2 L stand for the first L stands for leftmost derivation and this is the

this is stands for left to right scan of the input, this will do a left to right scan and it will

produce a left most derivation for the parsing.

(Refer Slide Time: 15:41)

So, we will see how it can be design, but to come to that. So, we need to have some

definition one is known as first set, another is known as follow set. So, these 2

definitions we have to learn by heart because, many times in our compiler course. So,

will come to these 2 sets first and follow and we should be we should be able to compute

them very confidently and particularly this follow set computation is slightly tricky. So,

we have to be careful there ok. Let us try to understand what does it mean. So, first of

alpha is a set of terminals that begins strings derived from alpha, as you know that alpha

is a any string of terminals and non terminals.

So, if it is whatever be the string. So, from starting with this alpha, whatever string after

whatever strings you can derive ok. So, in that for whichever symbol appears as the first

symbol; so, that is the thus that is particular terminal symbol so, will be included in the

first set. So, if alpha in 1 or 0 or more derivations give epsilon in epsilon is also in the

first of alpha ok. Now, if I have got so, how does it, how is it going to help? It is going to

help because, if I have got 2 productions, A producing alpha and A producing beta and at

present suppose, I am looking in the current input symbol is A.

So, based on this we will be able to take a decision like which rule to follow. So, we look

into the 2 sets first of alpha and first of beta. Now if the symbol A belongs to the set first

of alpha and A does not belong to first of beta. So, in that case there is there is no point

trying out the A producing beta alternative for this particular string.

So, we should try with A this A producing alpha type of rule. So, this way it will be

helping us in predicting like which rule to follow. So, in predictive parsing whenever we

have got A producing alpha or beta, if first of alpha and first of beta are disjoint sets then

we can select appropriate a production by looking at the next input ok. So, this way it is

going to help. Another definition is follow of A, so where A is a non terminal symbol. So,

follow of a is a set of terminals A that can appear immediately after a in some sentential

form.

So, sentential form means anything that you can derive with the start symbol of the

grammar. Suppose, S is the start symbol of the grammar and you are applying some rules

and. So, ultimately this rule leads to set of terminals. So, this is the final input string now,

all the this intermediary things that you have so they will be called sentential forms

because, they are actually derivable from S and will lead finally, to sum a string of the

language.

So, any string of any string of symbols terminals and non terminals that can finally, lead

to the finally, lead to some input string or involving terminals only and this is derivable

from the start symbol of the grammar then that mix of mixed string of terminals and non

terminals. So, there will be it will be called a sentential form so, and in that sentential

form.

Suppose, I have got a sentential form here, I have got the symbol A and after that

suppose this small a character, the terminals small a appears then we say that small a

belongs to the follow of A. In another sentential form maybe, this A is followed by may

be followed by B. So, B is also in the follow set of A. So, A can be followed by A or B.

So, the so, the follow set of A will have these 2 symbols a b, some more may be there,

but these 2 must be there.

So, if we have starting with S in 0 or more derivation steps. So, if you come to this type

of sentential form alpha A A beta and the for some alpha beta then a is the follow of A.

So, this particular small a is in follow of capital A, if a can be the right most symbol in

some sentential form then dollar is in the follow of A. So, if you have if you start with S

S and see that we can derive something. So, that a is the last symbol of that sentential

form then it is assumed that this may be followed by the dollar symbols and dollar

matches with the end of strings.

So, whenever we have got a string. So, the end of string is marked by the dollar symbol.

So, that is a convention followed by these compiler designers. So, it assume that the last

symbol of the input is the end of string symbol which is dollar. So, if this A happens to be

the last symbol of any sentential form then this dollar will also be in the follow of A.

So, these are the definitions of first and follow, first is any string that can be derived from

alpha, whatever can come in the first whatever terminal symbol can come at the

beginning so, that is the first of a alpha. Follow means, you take any derivations from the

start symbol of the grammar and all the intermediately derivations in all the

intermediately derivations, if this any non terminal a can be followed by another terminal

symbol small a then the small a is going to be in the follow of follow set of capital A. So,

that is all these first and follower define.

(Refer Slide Time: 22:02)

Now, how is it going to help us? So before going to that so, let us see how can you

compute this first set and follow set. For computation of the first set, we apply the rules

until no more terminals or epsilon can be added to any of the first set, what is the rule?

So, if X is a terminal symbol. So, we are trying to compute the first of X, where X is a

grammar symbol, it can be a terminal, it can be a non terminal.

So, if X is a terminal then first of X is definitely the X itself, because nothing more can

be derived from a terminal symbol. So, that is there in the first of X, if X is a non

terminal symbol and X producing Y1, Y2, Yk is a production for some k greater or equal

1 then we place a in first of X, if for some i a is in first of Y i and epsilon is in all of first

of Y1 first up to first of Y i minus 1 that is Y1 Y up to Y i minus 1, they produce epsilon.

So, let us try to explain this part. So, what it says suppose I have got the X is a non

terminal symbol and we have got a rule which says it is Y1,Y2, Yk. So, anything that

you derive from X suppose, this from this Y1, I can get a derivation like a alpha then Y2

etcetera, this Y1 can be expanded to a alpha then definitely a has is there in the first of X.

So, that is what the first part says, if Y1 whatever is there in the first of Y1 will be in the

first of X ok. So, if we just take i equal to 1 then. So, this whatever is in first of Y1 will

be in first of X other. So, what about the terminals belonging to the first of Y2? So, I will

have this thing if Y1 can give me epsilon.

So, if Y1 can be reduced to epsilon then. So, I had got this Y1, Y2, Y3. Now, if this Y1

can be reduced to epsilon then after sometime, I am getting the configuration like Y2 Y3

provided Y1 can be reduced to epsilon by means of some steps ok. So, then this whatever

is in first of Y2 will also be in first of X provided Y1 can give me epsilon.

So, in general so, if I have got say X producing Y1, Y2, Y i minus 1 Y i Y i plus 1 up to

Y k then whatever is in first of Y i will come to the first of X provided each one of them

can give me epsilon, that is first of all of them first of Y1,Y2 up to Y i minus 1, all of

them have got epsilon in them or I can say that is this Y1, Y2 up to Y i minus 1 can give

me epsilon. So, this is the second rule and it says that if X producing epsilon is a

production then we add epsilon also to the first of X. So, that is if there is a production

rule X producing epsilon then it will come.

(Refer Slide Time: 25:46)

So, let us see how this first can be computed. So, this is say this is a set of gamma rules E

producing T E dash E dash producing plus TE dash or epsilon T producing FT dash T

dash producing star FT dash or epsilon F producing within bracket E or id for some of

the rules. So, the first rule says that whatever is in first of T will be in first of E and if T

can give me epsilon then whatever is in first of E dash will also be in first of E. Now, T

does not give me epsilon. So, naturally I do not have that liberty.

So, whatever is in first of T will be in first of T. Now what is in first of T? First of T is

equal to first of F because, by this rule you see that first of T is equal to first of F and

what is first of F? So, this rule will tell that open parenthesis in first of F and i d is also in

the first of F. So, first of F has got open parenthesis and id and from this rule it says that,

whatever is in first of F is in first of T. So, first of T also has got open parenthesis and id

and what about first of E? First of E by this rule it says that, whatever is in first of T is in

first of E, first of T is open parenthesis id. So, first of E will also have open parenthesis

and id now first of E dash from this rule you see it is plus TE dash.

So, it starts with a terminal symbol. So, it cannot have anything else. So, this plus is in

first of E dash and E dash producing epsilon is a rule. So, epsilon is also in the first of E

dash. So, E dash so, first of E dash has got has got plus and epsilon and finally, this T

dash it can give me star and epsilon because, this can give me star and this is epsilon. So,

star and epsilon can come. So, in this way we can compute the first set for the gamma

rules that we have here.

