
Compiler Design
Prof. Santanu Chattopadhyay

Department of E and EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 17
Parser (Contd.)

There is a language hierarchy that is known as Chomsky’s hierarchy.

(Refer Slide Time: 00:20)

So, it is defined by Noam Chomsky. So, according to according to Chomsky there are

four types of languages they are known as type 0, type 1, type 2 and type 3. So, out of

this type 0 is the most flexible class of languages because the corresponding grammar

that we have is known as free grammar. So, this is called free grammar and the

successive classes or successive types.

So, they are more and more restrictive in nature. So, type 3 is the most restrictive version

which is known as the regular languages and the corresponding grammar is called

regular grammar then we have got type 2. So, type 2 is known as context free grammar,

context free languages and the corresponding grammar is called context free grammar

and this type 1 is more or (Refer Time: 01:46) more less the constant compared to type 2.

So, they are known as context sensitive grammar or context sensitive language.

So, from the name we can understand that this free grammar it can accommodate all

other types of languages, but as we are going from type 0 towards type 3 the languages

are becoming more and more restrictive in nature. So, for each of these class of

languages so we can have different types of accepters available from the automata theory

other or the computation theory and this for the regular grammar we have got the finite

state automata. So, other the finite state machine or finite automata. So, this is the class

of this particular tool can accept type 3 languages. So, we have examples like this NFA,

DFA etcetera.

So, all the regular expressions that we have seen in our discussion during lexical analysis

they belong to this type 3 language and we can have the corresponding regular

expression. So, we can draw the responding NFA and DFA and also we can write down

the grammar in some forms. So, I will welcome to that slightly later, then in the context

free category. So, here the corresponding acceptor is known as push down automata. So,

this is basically apart from the finite machine.

So, you will need a stack for designing and acceptor for the type 2 languages. So, they

are known as push down automata. Similarly in context sensitive category we have got

linear bounded automata, linear bounded automata which can be used for designing

acceptor for this type 1 language and this type 0 or free grammar. So, here we have got

Turing machine ok. So, as the acceptor machine that can detect whether a string belongs

to the particular language or not so that can be done that can be constructed using Turing

machine for free grammar.

Now, out of all this machines Turing machine is the most generic one and naturally we

can so that is going to be most powerful; however, constructing Turing machine as you

know the Turing machine is a hypothetical machine. So, we cannot construct it because

practically because the tip size is going to be infinite. So, this is a theoretical machine

only, but it is the most powerful computation platform that we can think about. And as

we go from this towards these finite automata they become more and more destructive in

nature and the corresponding acceptor day becomes easier to design.

Now, let us look into the corresponding grammar like will start with the regular grammar

and then slowly go to the other category. So, regular grammar we can have grammar

rules of the form X producing a or X producing a Y where X Y. So, these are non

terminal symbols. So, these are they belong to the class V N that is the class set of non

terminals and a is a terminal symbol so a is a terminal symbol belonging to the set V T

ok. So, the all grammar rules will be of this form X producing a or X producing a Y. If

you can take an example life suppose I have got a got an example like this say X

producing epsilon X producing a or a Y and Y producing b. You see that here all the

production rules on the left hand side we have got a single non terminal, on the right

hand side we have got a single terminal symbol or a single terminal followed by a non

terminal. So, either these two combination.

So, if a grammar is like this then will tell that the grammar is a regular grammar. So, we

can quickly try to understand what is this grammar. So, you can I see that this grammar it

will accept all those languages that can have at most one b and the b if the b is there. So,

it will appear only at the end like I can have strings likes say a a, a b. So, this can be

derived starting like this x producing a y then. So, sorry it is not a a, a b. So, I can have

the strings are X producing a or a Y and Y may be replaced by b. So, I can have a single

a or the string a b. So, only these two.

So, these two is the languages, these two are the belonging to the language now. So, this

is an example of context free sorry this is it is an example of regular grammar and their

type 3 grammar and the corresponding language is a type 3 language. Next will look into

context free grammar. So, in a context free grammar; so all production left hand side it

will have a single non terminal. So, here the idea is that left hand side of all production

will have single non terminal, single non terminal symbol.

So, typical examples are like this, I can have say X producing a Y Z like this where X Y

Z. So, these are non terminals and a is a terminal. So, on the right hand side there is no

restriction. So, another rule maybe say Y a Z. So, like that I can have a number of rules

so, on the right hand side it do not have any restriction, but on the left hand side there is

only a single non terminal symbol. So, if the grammar can be specified by means of

production rules like this, then the grammar will be called a type 2 grammar or context

free grammar and the corresponding language will be context free language.

And as I have told in the last class that most of the programming language construct they

belong to this type 2 category. So, there most of the grammar, that will be using for this

different different programming languages, so they follow this context free category. So,

that is why these has become very popular for the compiler design codes and everywhere

will find that will be talking about this type of languages; then comes this context

sensitive grammar. So, as the name suggests the context sensitive. So, every rule has got

a context. So, context it is like this if I have a.

So, maybe I have a rule like alpha X beta producing alpha gamma beta where this is

gamma is a alpha beta gamma. So, they are all strings of terminals and non terminals

strings of terminals and non terminals. So, you see that here the thing is that this X has

been repaired has been we can be replaced by gamma only if it is preceded by alpha and

followed by beta.

So, that is why it is there is a context. So, the context is that x is preceded by alpha and

followed by beta, then only we can apply this rule to change the x to gamma and alpha

beta they remain un change. So, they just hold the context that is why it is called a

context sensitive grammar. So, if you are having a string like say a b X c a then say X d

like that and suppose I have a rule which says that b X c can be replaced by say f Y d E

where X and Y they are non terminal and the b c d, a b c d E F so they are all terminal

symbols. Now you see that this rule b X c matches with this part ok. So, I can replace

this part by this right hand side.

So, I can from this I can derive the string a f Y d e, but this x cannot be modified because

the context does not match. So, here the context is a d, but here it is b c. So, contest does

not match so I cannot do this replacement so, it remains as it is had it been a context free

grammar. So, like this and it been a context free grammar I would have replaced both

axes by these rules. So, I could have written like a b and then X replaced by Y Z, a Y Z

then c a then again this X replaced by a Y Z. So, I could have done like this, but in a

context sensitive grammar since there is a context. So, that this left hand side has got a

context. So, you cannot replace it freely, only when the context matches you can do the

replacement.

So, it is even better in the sense that you can more precisely frame the grammar rules ok.

So, that is why this is more powerful than type 2 languages and type 0 does not have any

restriction. So, there is no condition regarding this context like while writing grammar

for context sensitive language.

So, you cannot change from this alpha and beta over the rule; so, you cannot. So, this

alpha and beta they remain unchanged from the left hand side to the right hand side of

the rule, but if in case of type 0. So, that restriction also does not exist. So, there is no

restriction on the grammar; no restriction on grammar.

So, you can have rules like a B c D producing x P Q y. So, you can have some rule like

this. So, it is totally independent of this context. So, I am not maintaining the context of

this left hand side or to the right hand side they totally modified.

So, we can have total freedom in the writing down the corresponding rules for the

grammar. So, this is the type 0. So, type 0 is the most flexible one as a result none of the

automata they can be used for accepting this type 0 languages. For type 0 you have to

reward to Turing machine for designing the acceptor and as I have said that we will be

mostly concentrating on this type 2. Because type 2 is the context free grammar and most

of the programming language constructs they will be based on type 2.

So, we have already seen type 3 which is regular grammar and we have seen that a

regular expression. So, you can always construct a finite state machine for that for

example, for this language you can very easily make a DFA. So, if this is the start state

on a it goes to these state this is the final state and on b also it goes to another final state

So, that is a. So, you can draw on DFA which will be doing this operation ok. So, this

type 3 can be there for the regular grammar and that is for regular expression.

(Refer Slide Time: 14:32)

So, with this we will be going back to our discussion on grammar. So, grammar as I have

said that it say 4 tuple V N, V T P and S N is the set of non terminal symbols V T is the

set of terminal symbols P is a set of production rules. And we have seen that depending

upon the structure of P, we can have different types of different class of grammars

different types of grammars and S is a special symbol in the set of non terminal V N

which is called the start symbol of the grammar.

So, so, and the strings of the language they will be represented by L G then they are the

strings that can be derived from S by applying the production rules or from P ok. So, any

grammar for which we have got for which we have written the production rules, many

times what will be happen is that we will not be explicitly mentioning the start symbol in

that case the first, the very first non terminal symbol that appears in the grammar

specification.

So, that is the start symbol for example, for this particular grammar E is the start symbol

because E is the first non terminal among the set of rules that we have written. For the

second grammar also E is the start symbol, now starting with E you can derive strings

like this. So, you can apply the first rule E producing E plus T, then you can replace this

T by T star F, then you may decide that this F I will be replacing by within bracket E. So,

E plus T into within bracket E and then this within bracket E.

That can be modified to say T by applying this rule E producing T from this you can

have E plus T star T producing F ok. So, say do not if say T star F then from this thing

you can derive like E producing E plus oh deriving is already there. So, E plus T into T

star id from this T can be again be replaced by say F giving us E producing T star F star

id, giving E producing T star id star id, giving E producing E producing part is not

necessary. T this T T can be replaced by F F star oh sorry this was E plus. So, this E plus

part is there F, F star F into id star id then that can give us E plus.

This F can be made to given id then this E can be made to give a T T plus id star id star

id. So, this T can be replaced by F so you can get it like this then this F can be replaced

by id. So, id plus id star id star id. So, I write these an identifier. So, maybe I have got an

expression like 2 plus 3 into within bracket 4 into 5 ok.

So, this shows the derivation starting with the start symbol of the grammar. So, finally,

we could derive this string. So, this string we could derive this string using the grammar

rules. So, this string belongs to the language accepted by the grammar. So, this appears to

be very cumbersome; however, the whole process is automatic. So, once we can write

down a piece of code that can do this transformation by suitably selecting the rules from

the grammar, then the whole process can be automated very easily.

So, this compiler, this parts are designing task or the two the knowledge that will gather

during this parts are design a discussion. So, that will help us to design this type of

automated tools.

(Refer Slide Time: 19:40)

So, coming to the error handling; now one also it is very common that the input

specification that is given the input file that is given for parsing it has got some errors.

So, particularly they are written by for programming languages. So, users are writing

programs and programmers often do mistakes ok.

So, those mistakes can lead to different types of errors, first one is the lexical error. So,

lexical error are those errors which are ah some which do not constitute any valid word

of the language. So, for example, if I have got say if I have got say a one symbol that that

is a 2 F. So, 2 F also this is not valid because the it does not fall into any of the regular

definition for the language. So, that is a lexical error, then we have got syntactic error.

So, syntactic error means there is some grammatical mistake.

Like say if then else statement it says that if some condition, if some condition then some

statement else some other statement say S 1 and S 2. Now, if I have not put this then so,

if I have written like if c S 1 else S 2. So, as far as the lexical analysis tool is concerned.

So, it will identify this individual tokens if else then that tokens that will constitute this

condition, tokens that will constitute the statement. So, it will find those tokens, but

when it comes to the syntax analysis phase so, it will be taken as a it will be detected as a

syntactic error because this does not make a correct statement of the language.

So, it does not follow any grammar rule. So, that is the syntactic error. So, another class

of error at the semantic errors. So, it is the program is or the statements are syntactically

correct, but semantically there is some problem this is particularly ah visible for the

programming languages where the variables I have got some types and the types are all

predefined. So, for example, in the language c so if you have got an assignment like x

equal to y plus z then this x y and z they must be predefined variables.

So, in your program you must have define somewhere for example, integer xyz that must

have been declared somewhere. So, if this is not there then x y z will not be there in the

symbol table and when parser we will try to parse this thing. So, lexical analyzer will

written x as id, y as id, z as id. So, that way the, it is an expression id plus id then this is

an assignment statement everything is correct syntactically it is absolutely correct. But I

cannot derive the type of this variables and whether this plus operator is applicable on y

and z that is also not known for example, if y and z are say character arrays then y plus z

does not have any meaning.

So, these are semantic errors. So, the semantic errors are also serious and they are to be

detected, but that that is not a grammatical error because grammatically it is correct,

grammatically we have got this identifier plus identifier. Now meaning of those

identifiers or the types of those identifiers we will tell us whether the construction is

semantically correct or not. We have got semantic errors then they there are so of course,

the lexical errors are there. Now how to do error handling?

So, error handling means somehow the compiler. So, it should detect those errors and not

only that the detection. So, it should tell it a, the user that here is the error. So, it should

pin point the error like what is the error and at which point in the program the error has

occurred. So, error handler it will have the goals like it should be able to ah report the

presence of errors clearly and accurately. So, that is the first thing that the some error is

there.

So, what is the error and at which place. So, that should be told very clearly, it should be

able to recover from each error quickly enough to detect subsequent errors. So, as I was

telling in some classes earlier that error handling is important because if you are detect

one error and if you just on detection of the first error if the compiler quits the

compilation job and it will it ask the user to correct it and maybe user we will correct it

and then give it for compilation, just to find that after two three lines again there is

another error. So, typically compilers work in a fashion in which it produces all the error

messages together. So, that user can correct all those errors and then give it for

compilation.

So, but for doing that it is very difficult because particularly for synthetic error since this

compiler or the parser is working based on some automata it may go to a state from

where it is very difficult to come to a clean state. So, so that is the, that is a very

important jobs. So, somehow the compiler must be able to decide that I have to discard

the next few tokens and come to a state which is clean and I can start looking into the

new tokens from that point. For example, most of the programming languages so they

have got the feature, that any statement that you have it ends with a semicolon.

Now, while doing the parsing operation so suppose there was an error at this point then

somehow the compiler must keep through all these tokens and it should come to the next

semicolon and from this point onwards it is expected that the effect of that error is gone

ok. So, from this point onwards the compiler should start doing the parsing face and try

to see whether it can detect more errors and not. So, if the recovery is not proper when

the compiler we will produce arbitrary error messages that will mislead the user.

So, this is very important that the user, that the compiler can come up to a decent state

from which it can produce proper error messages for the subsequent errors as well as. So,

it should add minimal over it to the processing of correct programs. So, if the program

this error handling part. So, it should not be such that it creates the code generate makes

the code generation process for correct programs to take long. So, it should not happen

like that. So, the compilation should be first at the same time it should be able to decide

on those ah on those errors and it should be able to recover from there. So, this is a very

important, this is a very important thing to do.

(Refer Slide Time: 26:54)

So, we will see how this can be done. There are several error recovery strategies

followed by these compiler designers one is known as panic mode recovery. So, panic

mode recovery is like this suppose we are at same place and there is a crowd and in the

crowd there is a there is some sort of news comes that something some something has

happened maybe there is a fire or something like that.

When the everybody wants to come out of the building for example. So, is if people who

if the people are inside a building all of them try to come out and we say that is a panic

mode may be, it is not mandatory that we should come out so early, but this we most of

the people will all the people will do like that. So, this is known as panic mode recovery.

So, what the compiler does is that it will discard input symbols one at a time until one of

the designated set of synchronization tokens is found.

So, what is the synchronization token? So, as I have said that depending upon the

programming language you can define when a particular block ends for example, for the

C language. So, you know that say every statement ends with a semicolon. Now if

discarding up to semicolon is also not sufficient you find that still the compiler the parser

could not come to descend state another synchronization token is the closing braze. Like

(Refer Time: 28:18) you normally you whatever we have. So, every block of statements

so that is enclosed within a braze, pair of braze.

So, if there is some error in this statement and by discarding this statement we could not

come out of the error then what the compiler we will do is that it will skip the success is

statements also till it comes to the braze. So, that it has fifth and entire block. So, that is

one possibility. So, some programming language so they will allow you to have

individual procedures and the begin end block markers begin procedure, end procedure

markers. So, in that case the compiler can skip up to that point. So, depending upon the

programming language that we fall which you are designing the compiler. So, we have

got different time synchronization tokens by analyzing the program you can understand

what are the, we can what are the synchronization token. So, this is known as panic mode

recovery..

Then there is a phrase level recovery. So, phrase level recovery it will try to replace a

prefix of remaining input by some string that allows the parser to continue. So, some part

of it may be there is some there is something like this for example, suppose my

grammars, my language says that there is an if then else statement if condition then

statement else statement. Now it may so happen that this then token is then this it is then

part is missing.

So, what will happen the parser or it will see this if part condition part then it will see the

statement part. So, what the parser can do so, it can be it can intelligently determine that

here what is missing is a then token. So, it can insert this then token into the input string.

So, that way it will replace a prefix of remaining inputs by some string. So, this is the

remaining string from this point onwards. So, this is the remaining string. So, it will

replaces this part by this it introduces this then at this point. So, the program did not

have, the program that you are considering has got something like this if C S 1 else S 2.

So, this part is not yet seen so it has got S 1.

So, it will understand that this I have to put a prefix then at this point then the whole

thing will become meaningful. So, this is the phase level recovery. So, it tries to

introduce some phrases at the beginning of this of this input part and then it can continue.

So, this way we can have different error recovery policies ok. So, there are error

production and global correction that we will see in the next class.

