
Compiler Design
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 01
Introduction

So, welcome to this course on Compiler Design. So, in this course we will try to see like

the different phases in the design of a compiler. But to start with it apparently seems very

much difficult that given a language, how do it translate it into another language. But at

the end of the course we will see that certain parts of it can be automated and certain

parts of it depends on the experience and the expertise of the programmer, to develop the

corresponding portions of the tools.

So, there are different parts of this course, while some parts of it have got formal

background on automata theory, other part they are guided by few rules. For some of the

programming language constructs the rules are well defined. Now, if we come across a

new programming language, can we need to you need to redesign those rules ok. So, in

this course we will try to have an overview of this entire process.

(Refer Slide Time: 01:24)

So, to start with in this introductory lectures so, we will try to see like what do you mean

by a compiler then, compiler applications, phases of a compiler, then challenges that we

have in compiler design and compilation process. So, we will see an example by which

we will try to illustrate like, what are the different phases of a compiler and we conclude

the lecture by summarizing what you have what we have in the introductory part.

(Refer Slide Time: 01:50)

So, to start with compilers have become part and parcel of today’s computer systems.

Now if we look back the early computer system that we are developed so, they have a

huge computers in terms of the hardware and it required a good amount of space to

house that particular computer.

Apart from that, say apart from these electrical and electronic challenges the other part of

it was to make it work. Make it work means to make it do some useful competitions. So,

for that purpose we needed to write a few write a programs and those programs are to be

entered in some machine level language. So, as we know that computers ultimately they

understand binary 0’s and 1’s. So, we need to write the program which is meaningful to

the computer in terms of 0’s and 1’s. So, you can imagine like the amount of difficulty

that you will have. So, if you have to write a even a 10 line program into (Refer Time:

02:52) convert it into binary 0's and 1’s, which are meaning full to the computer.

So, that so early generation computers there this was the main problem and this

translation process from this program that the program that is understandable by human

being to a program understandable by the underlying computer was a big challenge, and

it was done by means of manual methods by which we know the codes of each and

individual instructions and we do translation by hand.

So, that made it very difficult and slowly the system improved and today we do not even

understand that whatever we are writing and in high level language. So, it is not directly

understandable by the by the computer, that is executing it. So, there are a lot of

translations that are involved in the process. So, this translations are the essential part

that we have in compilers. So, this compilers they make users computation requirements,

which is specified by means piece of program understandable to the underlying machine.

So, user writes a program; that program maybe syntactically correct it is grammatically

correct as per the language, and the program is hopefully syntactically correct, that is the

meaning of the program is what the user wants to compute. For example, if you are

trying to write a program which computes a roots of a quadratic equations, then once I

write a piece of program in some language maybe in C or may be in some Pascal or C +

+, Java whatever it is.

So, there are two types of mistakes that I could have done; one is I have some

grammatical mistake that is made for example, in C language you know that every

statement it ends with semi column. So, you may miss some semi column at some place

so, that give some syntactically error. Maybe I am using a variable which is undefined

which is not defined so, far. So, that is that me also be a that may be also an error. But

there is a difference between these two types of errors. In the first type when I say that I

missed a semi column. So, that is a grammatical error where when I say that I have not

declared a variable. So, the machine does not know what to interpret for this particular

variable, the type of whether it is integer real characters so, that is not understandable by

the computer.

So, the type of operation that we are trying to do on the variable is not well defined. For

example, if I have if I am having two integer variable, I can do addition operation, but if

the variables are of type character array. So, I cannot do the edition I can only do string

concatenation or say string operations on them. So, there is a basic difference between

the two types of errors that we understood that which one is syntactical error another

when the meaning of the program is not correct. So, that is the semantic error. So, it is a

compiler the designer job to catch both of these types of errors syntactic error and

semantic error. So, when the user has specified his requirement. So, then the requirement

itself we need to analyze whether the requirement has been specified properly

syntactically, and or and the meaning of the program is also clear. When everything is

alright, then only the compiler will do a translation. So, it will translate the program from

whether high level language to the machine level language and that includes complex

transformation.

So, in this course we will see how those transformation are taking place. So this

transformation will happen accordingly and with the increase in the complexity of the

computer architecture and operating systems. So, the challenge that the compiler

designers face so, that is also increasing. For example, like say today if you look into any

advanced computer architecture system. So, it has got many interesting feature; one

typical example is the CISC versus RISC architectures. So, CISC architectures we have

got instructions which are pretty complex and the RISC architecture we have got

instructions machine level instruction which are very simple. But the main difference is

that, in case of RISC the instructions are of equal size and they take more or less same

amount of time for execution whereas, for CISC architecture so, it is a other way. So, it

takes the instructions are of variable size and they take different amount of time for their

execution.

In fact, while you are trying to do some work so, if I give you instructions which are very

simple in nature. So, you may possibly do that operation in a many more compact

fashion. Like if I am trying to find the roots of a quadratic equation then, if I have very

simple instructions in my hand, I can possibly do that operation without creating much of

extra executions. On the other hand if I am having complex instructions so, some of the

instructions may not be a very much necessary whole part of the instruction may not be

complete necessary for some operations, but still I have to take it.

So, that way the CISC instruction they are going to be difficult to handle as far as the

compiler designers are concerned and in fact, this movement from CISC to RISC this

happened, because of this compiler designers from the compiler designers perspectives.

So, it was suggested that if I have got simpler machine level instructions, it is easier to

generate efficient code. So, with that this is done. So, with the advances in computer

architecture so these challenges that are faced by the compiler designer so, that is going

up.

So, memory management policies like today you know that almost all computers

operating systems they are supporting virtual memory. So, virtual memory supported

then so, we have to we have to judge like what are the most relevant operations that we

are going to do, and possibly we want to keep those relevant portions in some on part of

memory, which is not going to be swapped out to the secondary storage. So, that the

operational efficiency is high.

So, this way this memory management plays an important role in determining the

compilers generated codes performance. On the other hand the operating systems the

new operating systems are coming. So, they are also having and new and newer features.

So, accordingly or the challenges that are faced by the compiler designers so, they are

also increasing significantly.

(Refer Slide Time: 09:39)

So, what is a compiler? So, let us try to understand what is what is it. So, compiler is a

system software, that converts source level language source level source level language

program into target language program. The source language may be some high level

language like say C, C ++, Java, FORTRAN, Pascal.

Now, how many different languages have been developed so, far that is innumerable. So,

we cannot just go on giving examples, but we can say that. So, compiler for every

language that he designed. So, if he want that the corresponding program will be

executed by the underline computer. So, there must it must be translated into some

machine level code, and that has to be done by the compilers. So, compiler is a system

software, that converts source language program to target language program.

So, here the target language means in this particular case we are assuming machine

language, but very shortly we will see that it is necessarily machine level language. So, it

may be something else also. Second important thing that the compiler does is that it

validates input program to the source language specification. So, source language any

language is specified by means of its grammar for example, if we look into the English

language. So, English language has got its own grammar ok. So, any English sentence

that we write. So, you can check whether it is grammatically correct or not by properly

analyzing the sentence.

So, similarly when you write a program in for some in some language, so, we can consult

the grammar rules of the language and accordingly we can say whether the program is

grammatically correct or not. So, if the program is not grammatically correct, then the

compiler should produce some error messages. So, that such as for example, semi

column is missing then it can say that one semi column is missing at this point.

 Sometime we also need to produce warnings. So, warnings are like this that, at some

places may be the programmer has not retained some specific declaration or specific

transformation that is needed, but it may not be an error. So, if the program will execute

but the out outcome of the program may be unpredictable. So, we will take a small

example and we will take a small example like for example, in C language program

suppose I write say integer x, and then x equal to 10.5. So, if we do this. So, there is a

problem because this 10.5. So, this is not an integer number. So, this is a real number and

x is an integer as I have defined.

So, you see that when the system will try to do this 10.5 assignment to x. So, what will

happen it is very much system dependent, because the 10.5 being a real variable maybe it

is given 6 bytes of space or eight bytes of space whereas, integer x being an integer

variable, depending upon the system it may be given 4 to 6 bytes. So, what I essentially

means is that, the space allocated to an integer variable and the real variable so, they are

not same.

So, naturally when you do this type of assignment, the value that will be copied into x is

not very clear it is not very much sure ok. So, if you and it can vary from one computer

system to another computer system. So, output produced in one computer may be

different from what is produced on the other computer. So, ideally I should write if I

really want that this integer part should be assigned to 10. So, I should write like this; int

casting the type casting has to be done and then I should write 10.5. So, in this case I am

explicit. So, if I write like this then the compiler knows that what the user wants is the

10.5 value should be taken as an integer value and then assign to x.

So, there are well defined rules by which this transformation will be done. So, it will

remove the fractional part and it will take the integer part only and assign it to x, but at

this point what the compiler will do or what the what will happen when the program is

executed. So, it is not sure. So, in this case it will generate an warning. So, this is an

warning that there is a this is the incompatible type assignments. So, when you go to the

type management or this type checking part of this course. So, we will see this thing in

more detail. So, what you essentially mean is that, it is trying to it is trying to assign

some new value to it is trying to assign some new value to a variable, and the value may

not be comfortable.

So, that can give some warning. So, there are other types of warnings also that can come.

So, many time when you are writing programs and compiling it so, you must have seen

many such warnings and most of the time we say ignore the warnings. But ignore the

warnings is not always good because as I have said that the value assignment may not be

predictable. So, as a result your programmer may not run correctly. So, it is ideally

desirable that you remove you take care of the warnings also and take appropriate actions

in your program modify the program in such a fashion, that the compiler does not given

give the warning also.

See if there are errors in the program, then the compiler does not generate the final target

code it gives the errors and come out. But if there are warnings, the compilers they

generate the target code also, but the target generated code may not be very good say it

may be erroneous. Then primitive system as I said the early computer systems that they

did not have compilers. So, at that time the electronic design itself was so, challenging,

that people did not think about how to about this writing programs in high level

language. They thought that entering the values through some switches and all that

should be good enough to judge the underlying hardware. And program written in

assembly language and hand coded into machine code.

So, after this machine language we have at the next level of program. So, there was a

assembly language code and when we discussed some in some courses on

microprocessors you might have seen this assembly language programming. So, this

assembly language programs so, they are they are they were hand assembled. So, if you

look into the processor designers manual, you will find the corresponding code for each

and every instruction and accordingly every instruction ultimately gives rise to some

hexadecimal code and those hexadecimal code values are entered through manually,

through the some card reader or some other mechanism. So, that the program is entered

into the computer system.

So, it was very common that ok. So, last night you enter your program. So, you typed

punched cards a good say may be a 84 for (Refer Time: 16:30) 89 program. So, there are

80 cards. So, 80 cards you punched on a card punching machine, give it to the system

and next day morning you come just to find that, at card number 8 there is a syntax error.

So, in and then again you go back again punch the cards correct it, and then again give it.

So, that was the problem it was taking huge amount of time today you do not even think

about that type of situation. So, as soon as we write the program even a part of it we give

it for compilation and see whether there is any error in that part or not. So, that is the

beauty of this compilers that can help us in deducting the bugs much earlier.

So, compiler design it started actually with a language FORTRAN in 1950s. So,

FORTRAN is the language which is used for which was used for scientific calculations

full form is for formula translation. So, and quite sometimes FORTRAN existed and this

was also first compiler they were designed for FORTRAN language. And many tools

have been developed for compiler design automation. So, as I said that a part of this

course. So, they have got foundation on automata theory and accordingly we can come

up with some tools automated tools that can generate the compiler given the given the

grammar of the language.

So, it can generate the compiler in the sense that it can do syntactic checks ok. So, if

there are some grammatical errors in the program. So, it can come up with those errors,

but it cannot generate code ok. So, code generation part. So, we have to rely on some

other translation mechanism, which are commonly known as syntax directed translation.

So, which will be doing this translation part. So, one part of the course is to check

whether the program is syntactically correct or not, the second part of the code is to see

how we can generate code for the programs which are syntactically correct. So, we will

slowly go into this different parts, next we will see.

(Refer Slide Time: 18:49)

So, pictorially you can think of a compiler like this it us a box. So, that the source

program is the input and it the source program is taken as input and it the compiler

analyses the source program, and it generates the some error messages if there is some

error in the programs. So, it can generate some error message. If there are some warnings

so, it can generate warnings and if there are no errors then it also generates the target

program.

So, in the maybe in machine code maybe in some other form it also generates the target

program. Now at this point of time so, I would like to emphasize that there are the

another. So, in general I can see the compilers they are working as the translators. And

these translators there are two types of translators that you can see in a computer system;

some of them are known as interpreters interpreter and others are known as compilers ok.

The role is more or less same in the sense that both of them translates the source program

into machine language program, but interpreter is doing it like this. So, if this is a

program ok. So, it has got this program lines in it. So, interpreter will take one line at a

time. So, it will take the first line, it will convert it into the machine code and it will

execute it.

So, if the execution is fine then depending on the execution. So, then it will go to the

next statement, it will translate the next statement into machine language and then again

it will execute the program. So, it will execute that particular line. So, in case of

interpreter as the name suggest. So, it interprets the programming language statements

one by the programs statement one by one and executes it. Whereas, for compilers it

takes the entire program together and as this diagram is showing this diagram is showing.

So, it is generating the corresponding target program. So, given if this is the source

language program so, for this it is translated into a machine language program by the

compiler. And this entire program can now go into execution. So, it can go into execution

and to produce the result it will produce the result. So, that is the works this compiler

works.

So, this entire translation is done in one shot. So, this interpreter they are good in the

sense that when you are designing the program initially, the interpreters may be good

because it will it will go one line by line. So, if there are some error in the program

particularly the logical bugs in the program, then it is easy to catch those logical bugs by

means of interpreters whatever point there is some problem raised. So, we can we can

check the variable values and you can try to see like what has done wrong. But at the

same time the interpreted execution is also pretty slow, because it is doing one program

line at a time so, it is going to be pretty slow unlike the compiled version.

So, it may be advisable that it initial phase of program development, we use the

interpreters and at the final phase when the interpreted programs are running correctly,

we are happy with its execution. So, we can give it give the program to a compiler. So,

that the compiler will generate the target code directly and this now the target code

execution will be much faster compared to the interpreter interpretation of the source

language program. So, the interpreter they are working at the source language level

whereas, this compilers they are also working at the source language level, but they are

converting entire program into machine code. So, as far as execution is concerned it is

for the entire piece of code that the execution is being done.

So, this translation so now, we will try to emphasize on this line target program. Now

this target program invariably we have assumed so, far that this target program is the

machine language program, but it need not be so. So it may be something else also.

(Refer Slide Time: 23:12)

For example suppose I have got two pieces of software. So, suppose I have got two

pieces of software: software 1 and software 2. So, some input that the that comes to the

software 1. So, this is the input given to software 1 and it is necessary that this input will

be should be processed by software 1 and software 2 to produce the final output. So, this

software 1 produces some output that goes as input to the software 2 and the software 2

finally, produces the output. So, it can. So, happen like this.

Now, if this software 1 and software 2 are coming from two different vendors. So, it is

very much possible that this format in which this software 1 produces the output is not

compatible with the input format of software 2. So, in that case it is necessary that we put

a translator here also. So, that this program is this output of software 1 is converted into

another output, which is compatible to software 2 which is understandable by software 2.

So, in this case this target program that we are talking about is this one this is a second

program that we are these input or software 2. So, here also this compiler that we have

so, it is doing a translation, but it is generating target program which is not for machine

execution, but for understanding of another piece of software. So, that can happen. So,

that is why this target program when you say. So, it need not necessarily be the machine

language program it maybe some other format also. So, whenever we need any format

conversion type of job. So, this compilers so, they can be utilized.

(Refer Slide Time: 24:59)

So, next we will see. So, what are the next answer very simple question like, how many

compilers? Like if we say that how many compilers have been designed so, far can we

enumerate and so, it this slide is just to make you understand that how difficult maybe

the job of a compiler design ok. So, impossible to quantify number of compilers

designed so, far. So, many compilers have been designed. So, nobody can tell like how

many compilers have been designed so, far.

Large number of well-known, lesser known and possibly un known computer languages

designed so, far. So, after we have gone through this code. So, you will understand that

designing a new language is not that difficult. So, once you are very clear in your mind

that what are the requirements that I need to specify, you will see that designing a new

language is not difficult and whenever you design a language. So, you need to have a

compiler to translate it into some other form. So, it may be machine code may be

something else, but we have to do that.

So, as a result what has happened is that, various people they have tried to design new

languages and accordingly there are lots of languages that have been designed. So, which

are lesser known and possibly unknown computer languages. So, need not known at all

and similarly there are large number of hardware software platforms ok. So, hardware

software platforms so, every day some new company they are coming up with new

features they are adding new features to the operating system. So, if the compiler is

trying to exploit those features, then definitely it has to be it is a new compiler because it

is targeting to a new target machine.

So, that way this how many compilers if I want to answer. So, it is very difficult to

answer in terms of numbers possibly you can say it is infinite. So, efficient compilers are

must for survival of programming languages, because if the compilers are not efficient

then nobody will be using that particular programming language. For example if I design

a language say l and I find that whenever I write a programs in language l. So, when it is

translated into machine code, the program is much much slower than the programs that

we have in C language. So, in that case the language l will not survive people will not

use this language l ok.

So, that way these efficient compilers are very much necessary for this programming

languages to survive; inefficient translators developed for LISP made programs run very

slowly. So, LISP is a functional programming language. So, that is that was designed

long back ok, but in it is it has got very nice features like programs that you write in

LISP are very much much smaller compared to the high level language programs other

high level language program like C and all, but the problem is the translated version of

the program. So, they were very slow.

So, if the translators designing efficient translator became a problem was a problem. So,

the lisp program they use to run very slowly. So, it was not that much popular. However,

with the advancement in memory management policies particularly garbage collection

and all so, it has provided the avenue by which you can have a faster implementation of

such translator and such languages are rejuvenated.

So, that way many old languages they are also coming back and because of the facilities

that are provided in the operating system and the underlying hardware, and accordingly

the programs they are they can be the efficient can be generated for the languages. So,

this way answering the question how many compilers have been designed so, far is not at

all very straight forward, you can only say it is not enumerable.

(Refer Slide Time: 28:55)

Applications of compilers; so, you have got first application is the machine code

generation. So, it convert source language program to machine understandable one. So,

that is the first the very first thing, that most compilers they are designed for this machine

code generation takes care of semantics of various constructs of the source language. So,

this is; obviously, I have to see that the program that is given to given for compilation is

syntactically correct. So, that is the syntactic the semantic constructs and syntactical

structures that we have so, that they are satisfied or not.

Then limitations and specific features or target machine. So, it has to see like what are

the features like for example, say integers in the in some machine is allocated say 2 bytes

some machines 4 bytes in some machine it is a little Indian architecture some machine it

is a big Indian architecture. So, like that there are different architectural features that we

have. So, I have to look into those limitations and features of this target machine to see

how the compiler should generate the code.

Automata theory that helps in the syntactic check checks; so, it can classify the program

to be either a valid one or an invalid one, but it does not answer anything beyond that yes

and no. But if the answer is no in that case also the compiler has to give enough

indication that what exactly went wrong in the program ok. So, that is the challenge. So,

it is not that compiler design the compiler designer designs compiler such that given a

wrong program, it just says that the program is syntactically wrong should not be. It

should tell at line number 10 there is this error, at line number 15 there is this error, line

number 30 there is this error.

So, you see that we get this type of messages. So, how this is actually done whereas, the

basic theory of automata so, that will allow us to classify the programs only into two

classes valid program and invalid problem. So, it does not give us hint on where exactly

it went wrong.

So, it is the compiler designers responsibility to see that to see that enough information is

given back to the programmer, to indicate how much where exactly the program went

wrong and what what should be the action. Compilation also generates code for

syntactically correct program. So, if the code if program is grammatically correct then

the compiler should generate the code. So, this is the major operations that that are done

by a compiler in the machine code generation process.

