
Scalable Data Science
Prof. Anirban Dasgupta

Department of Computer Science and Engineering
Indian Institute of Technology, Gandhinagar

Lecture - 08
Streaming Model, Counting Distinct Elements

Welcome to the course on Scalable  Data Science.  Today’s lecture  is  on a Streaming

Models; on the streaming model and on the problem of counting distinct elements. My

name  is  Anirban.  And  I  am  a  faculty  of  computer  science  and  engineering  at  IIT

Gandhinagar.

(Refer Slide Time: 00:35)

So, all of you have must of heard the phrase big data or large data, which is this course is

all about of course. And I do not need to convince you if the data is massive it is going to

faster than our ability to store or even index right. Fact without through any other equal

numbers of it (Refer Time: 00:50) the predicted rate of growth of data given by Forbes is

at 1.7 Mb per person per second right.

And this will create and this creates zeta bytes of data in about number in few hours or

few seconds available right. Some of the more astonishing and very useful data sources

that we really need to analyze then the, because we have spent millions and billions of

dollars increasing this data, are for instance the large the data coming out of the large

hadron collider or the data coming out of gravitational wave detectors.



Or the data  that  are  going to  come out  of the personalized  genome sequences  right.

Imagine if you could sequence a genome of obviously, individual in the in the planet

how much data will that be. And we really need to be able to analyze this data at the

speed that it is coming right.

(Refer Slide Time: 01:45)

This I have is typically termed as problem of handling the combination the velocity and

volume. In a large amount of data is coming at us at a tremendous high velocity and we

have no option, but to try to process it without explicitly storing all of it in memory right.

So, imagine you are a network switch designer right. And as a designer you have to

answer simple questions like this which IPs have the most packets passing through the

switch right. Has the traffic pattern changed overnight dramatically? Because the answer

to this questions might give you indication of whether there is a demand of define denials

that is that happening by exploiting mechanism through a switch right. And you have

better be able to sort of answer these questions fairly accurately right, without having 2

sort  of  stores  the  entire  data  in  some  offline  cloud,  and  then  doing  some  I  mean

processing on it and so on right. It was that takes very too much time right.

And has a network switch person you do not even have accessed to that much memory, it

could potentially be megabytes or even smaller than that. So, what do we do? We have to

give on trying to give an exact answer. This is the first thing that we do. We have to try to

and we have to rely on only trying to deal with approximations.



That is will try to return answers that are close enough to prove it. And will also try to be

correct only with high probability. We have already seen instances of this like in the

bloom filter where we are giving up on the fact that we had to return in a correct times

always we say it quite a bit on the space ok. We went from something like m log u to n

space and bits in the bloom filter. So, here again that is the strategy that will take that

will return approximately answers and will be with returning wrong answers sometimes.

(Refer Slide Time: 04:02)

So, data is assumed to come as a stream of values. For instance, it could be bytes when

reading off a tape drive. Or it could also be the destination IPs that are seen by network

switch right.

So,  the size of the universe is  assumed to be much large compared to  the available

memory. Typically, what we stay say that if the if the available if the size of the universe

is u, then the available memory is at most poly log of u not much more than that you also

restrict algorithm. So, that it makes a limited number of passes over the data. And at best

I mean you would really like you can make only one pass.

And in certain settings it is all we could do for instance if it is a network switch right the

data is just flowing by u if it is wrong it is gone. And whatever you have to calculate you

have to calculate only one possible of data. In certain other case for instance if data is

really is in a tape drive somewhere you can potentially make a small number of passes

over it is expensive, but you can still do it right.



So, what we want to do is that will create summary data structure ok. Let us call it a

sketch although has been sort of define it later a sketch has certain. I mean a sketch is

little more formulae define them we are sort of talking about here, but let us call it a

sketch. So, will create these sketches out of the data and will use this sketches to try to

answer the queries of the end ok. So, the question is; how do we design these sketches

for non trivial questions.

(Refer Slide Time: 05:48)

And here is a very simple looking question first. The problem is that of estimating the

number of distinct elements that we have seen ok. So, what is this? Let us formulate

define it suppose the element suppose universe is u the number of distinct elements that

you have seen is n ok. This n is smaller than u of course, could be potentially much

smaller and the stream size is m right which is bigger than n.

So, what does it mean it means? At the same element could potential appear multiple

times. For instance, you see here instead of IPs is 20 dot 10 may be this particular IP has

appeared here again and then there is some other IP and so on right. So, they say and

may be this IP could come back here later and may be here later and so on. May be this

IP could come back somewhere here later and so on. So, remember that we cannot really

assume anything about the order in which this data comes right. Because of it is network

switch the IP is that IP traffic is coming in a particular order ok. And we want to estimate

the number of distinct elements. So, we have seen. So, what do we do right?



(Refer Slide Time: 07:05)

So, before seeing what we do let us see let us see of a couple of applications. As we saw

the network switch is one example here is another very common example. Suppose you

are analyzing the document corpus right. And when you are doing modelling of this of

the of this document corpus sometimes you need to create  whereas,  known as this  k

grams which are essentially k, I mean a bytes of you take k consecutive bytes that have

appeared in your in your text data right. And you have to create a k gram out of it right.

And your stream is generated by this by this document corpus that you are meeting.

So, this document corpus is used and you are reading it and you are sort of creating this k

grams as you as you sort of pass by and in order to create your may be your topic model

or your natural language model you need the number of distinct k grams the case seen in

the corpus right it  is  some estimate of that  right.  And remember  that  the number of

distinct k grams the potential number of distinct k grams could be the universe is huge

right. Because there are having; let us say that there are 256 bytes and each of them and

you are taking the value of k 256 to the power k which is huge even correspond the

values of k.

Similarly, if we are analyzing let us say telephone call records as in who called whom

right. And Vodafone could want to see what are the number of telephone calls that may

what are the number of phones that may at least one call in this month right. And then

from this tuple from the stream of this tuples you now want to see that I look at only the



first element of the tuple. And I want to see how many how many phone numbers distinct

phone numbers appear as caller in at least one of the records ok.

(Refer Slide Time: 08:59)

So, again before we look at anything (Refer Time: 09:01) will try to look at what are the

naive solutions. The first naive solution is what we know all I mean what we already

have d 1 1 can immediately think about is that you store all the elements is sorted and

you count the number of distinct elements. So, how much space does this take this takes

have lot of space. Because in order to store all the store one element you need log u

bytes. I mean log u bits and to store n of them you need n times log u right.

So, therefore, you need that much n times log u space, if you are doing a sorting. And

then accounting it is not we have to see that and we already saying is that I mean if you

stored a hash map instead right. And then they you do not sort, but you store we are

keeping a hash map, and then and then you for every new elements that comes, first you

check whether this element is already there in a hash map right. If it is not, then you

insert it  in the hash map and increment around and if it is there then it is not in this

elements. Here you do not expect it is sorting.

So, it might be better you might think that it is better algorithm, but unfortunately not in

terms of this space that you have done that you need even this needs n log u space. The

bit array solution that we saw before right although for a slightly different problem the

same solution a similar solution works here, you could use a bit array of size of size u



and you initialize only if the element is in the single stream this needs order u space. So,

can we do it in much less space than this?

Unfortunately, no it is possible to show using information theoretical arguments, that if

you  need  an  exact  solution,  if  you  need  an  exact  solution,  even  if  you  allow  for

randomness you cannot do much better than this. However, if you allow this combination

if the of the 2 an approximate solution as well as randomness that is the possibility of

making errors sometimes, then suddenly magic happens right.

(Refer Slide Time: 11:15)

What happens is that you get a much better solution in much less space. And we call this

kind of solutions. So, these will be a common categories of these will see. And we will

call  these  to  be  epsilon  delta  approximations  right.  So,  what  is  an  epsilon  delta

approximation?

So, here is our filterpically look at that supposed the true the true solution is n. Suppose,

the  true  solution  is  n  which  is  the  actual  number  of  distinct  counts.  Suppose  the

algorithm is returning some n hat. The algorithm is returning n hat, and epsilon we call it

epsilon delta approximation. If it satisfies the property that the estimate n hat lies within

1 minus epsilon of n and 1 plus epsilon of n with probability 1 minus delta.

So, with probability 1 minus delta we can say that the solution that have returned is

within a 1 minus epsilon to 1 plus epsilon multiplicative factor of the original solution



ok.  And  so,  what  is  this  probability  over  this  probability  over  the  randomness  of

algorithm in our specific case, in the case of the distinct counts the randomness will be

the choice of random hash functions.

So, the probability will be over the choice of the random hash functions ok.

(Refer Slide Time: 12:50)

So, again before, we do anything complicated let us try something simple. Let us look at

this case setting that the stream that the universe size is n the stream length is m and m is

much bigger than n. So, do remember that we are using m here for the length of the

stream, because in our previous lectures we have used it as the as the size of the memory

or the size of the data sets.

So, we have removed the notations here just to just to caution you propose here is the

proposed algorithm. A proposed algorithm is that suppose we are given space limit of s

right; that you can store only store s items what can we do let us sample s, s items from

the stream right. Let us sample s positions from the stream that may be if the stream is

like ok, a 1 a 2 an a m, we let us say sample the position 1 we sample the position 2 we

sample the position 3 and we sample position m right.

So, we have sampled m positions. Let us find out the number of distinct elements in this

set. So, may be a one is really the element 1 a 2 a m minus 1 is also the element 1 a 2 is

element 2 and am is element 2. So, the number of distinct elements n hat here is 2. And



then what am proposing is that you return n hat times m by s. So, for instance here will

return 2 times 4 2 times m which is known divided by s which is 4 ok. That is the

estimated method will return here ok. Since natural right, but this is a good thing to do.

Unfortunately, not, and it is not very hard to see why. So, imagine this particular setting

right.

So, in this particular setting we have only the elements from one to n minus 1, let us say

and the first whole lot of the array the whole lot of the of the of the input sequence. In

fact, m minus n m minus n plus 1 of the of the stream positions is really one element, one

the same element occurring multiple times. And then you get n minus 1 distinct elements

or rather n minus 2 distinct elements here ok. So now, supposing if m is much bigger

than n suppose if m equal to let us say n square.

So, in that case and suppose in s is like, s is like I do not know n. So, if you sample n

positions out of n square right with very, very high probability, you will only get the

elements here right. And therefore, you will return you are your estimate n hat will be

equal to 1 with high probability ok.

So, it does not work. So, what do we do?

(Refer Slide Time: 16:15)

And in fact, it does not work because see what we what may happens is that, if you are

sampling only this one particular element you cannot distinguish between the 2 cases.



(Refer Slide Time: 16:30)

 

When we have when we have 1 1 1 1 1, when we have 1 1 1 1 one and 2 3 4 n minus 1

we have 1 1 1 1 1. And then again more ones right. These 2 cases we return the same

answers right. So therefore, this particular sampling algorithm cannot work.

So, let us look at another simple algorithm. This will not be very efficient, this will not

be the most efficient algorithm that will be that will see, but it will be fairly good it is it

is actually fairely useful for lot of real settings. And this is known as linear counting. So,

what do we have we have a bit array b of size m again initialized to all 0s, will choose m

the value of m later. We again have a hash function b right that maps from that maps

from the unversed to m.

So, when seeing an item x right, we do not I mean we only do one simple thing we go to

the position that the hash function in bits and then we set that bit to be one right. So, this

should really be u ok. So, what we do when we are trying to estimate. So, at the end we

look at the number of non 0 entries.



(Refer Slide Time: 18:10)

We look at.

(Refer Slide Time: 18:31)

So, we look at z m to be the number of non 0 entries of. So, the number of 0 entries right.

And then we return an estimate like this minus of m log of z m by m ok. So, why does

this makes sense? Let us try to do the analysis.

So, we return this as our estimate n hat ok. Fair enough. Why does it makes sense? Let us

try to analyze. So, just is the sanity check see that it is returning at least I mean at least

positive number right. Because the z m by m is the fraction and therefore, the log of that



is the negative number. So, it is return with at least something that is a positive number

fair enough. Let us see.

So, to see by that makes sense, let us look at the posi I mean again the probability that a

particular position remains at 0. We have looked at such a probability when analyzing the

bloom  filters  right.  Then  it  is  very  similar  analysis,  that  because  we  have  done  n

insertions the probability that particular bit positions a particular bit position remain 0 is

again the probability that all the insertions going to other n minus 1 bit positions. And the

probability of that is 1 minus 1 by m to the power n right. And this let us approximate by

e to the power minus n by m.

So, therefore, that the expected number of positions that are still at 0. So, remember z m

is the number of positions that are counting at 0. What is the expectation of z m? So, the

expectation of z m is m e to the minus n by m right. Because the probability that each of

that a single one remains 0 is e to the power minus n by m therefore.

So, we define a indicated random variable and you just count the number of positions

that are 0. And they turns out to be m e to the power minus n by m.

(Refer Slide Time: 20:34)

So, therefore, we say that suppose in we believe that z m hat is closed to expectation.

Therefore, z m hat equals m e to the power minus n by m. And therefore, z m hat by m ln



of that equals minus n by m. And that gives you the estimate that n hat equals minus m ln

z m hat by m ok. And now you see how that mysterious formula came to be.

So, this equality why does it hold; this in order to see why this equality is justified we

have to go back to some other tail inequalities that we have taught you. And we will not

sort of do that analysis m because we look at smarter algorithms, but it is not very hard to

show that is fairly concentrated. So, this is actually justifically gives you a nice estimate.

Although for that right you have to use the value of m to be some constant factor times n,

which is the number of elements that you are that you are looking to count.

But this is often useful in practice, that is if you are not sort of interested in coding some

more complicated algorithms this is our a quick. And dirty if you are reasonable amount

of we have been a whole lot of memory always in our memory that you dispose ok.

(Refer Slide Time: 22:07)

So, here is a very fun algorithm right. And this was a very riches tree by martin, when

was actually dealing with pdp computers in which you literally had an equilibrates of

memory right. And then but he was an engineer and he could not really analyze it and it

was analyzed by this brilliant mathematician Philip Flajolet please look him up on your

Wikipedia if you can, to provide this and further sort of improved beyond what martin

was doing to be rather is very excellent algorithm, which is still in use this is known as

commonly known as the Flajolet martin sketch or the FM sketch.



So, here is what we have. Again the secret ingredient is the hash function. And here it is a

hash function that maps every element of the universe to a bit stream of size l ok. Here I

have written it as 2 to the l, but think of it as a bit stream of size l a bits stream of size l

ok. So, initially let  us just assume that h of x is completely random right.  Although,

remember that we have talked about the fact that completely random hash functions are

not practical because they cannot really be stored.

So, we have to use something like 2 universal or k universal hash functions. And ah, but

it is just easier to the analysis with completely random hash functions and then see how

we can change it for k universal or for more realistic hash functions. So, here is what we

need to define, very mysterious quantity. We need to define given any bit stream v. So,

think of bit streams and integers as interchangeable quantities right. For any bit stream v

define 0s 0 of v 0 of v to be the position of that right most one 

So, think of this positions 0 index which is position 0 position 1 position 2 position 3

position 4 right. So, I say that 0 of 1 0 1 1 0 is 1. Because the right most one is at position

1 here the right most one is at position 0 1 2 3 at position 3 right. So, note that this also

means that this is the maximum I such that 2 to the, I divides the integer v right. Because

this quantity I mean you have I minus 1 0s m is that it is divisible by 2 to the. I ok.

(Refer Slide Time: 24:55)

So, here is the very simple algorithm. The algorithms just says that we choose a random

hash function h that maps every element of u in to a l length bit stream. Then we keep a



counter z, right. That is initially said to be 0. So, this is initialization that is it. Now we go

we are going over all the elements of the stream right. And at every element when you

when you get the element x you call the function process of x, when we call process of x

this is what happens, right. It just says that.

It counts the it calculates h of x, then it sees that let us look at the number of zeros let us

look let us calculate the zeros function n h of x which means that let look at the position

of the right most one. Is that bigger than the values showed in z? If that is so then you

update z with this y that is it.  So, basically z contains always contains the maximum

position the maximum of the right most bit elements right most bits of the right most one

bits ok.

So, z contains the maximum right most position of one. So, when we trying to estimate,

we take; I mean at the end of the stream we are supposed to call the function estimate.

And we calculate 2 to the power z plus half one and we just return that. That is our

estimate ok.

 So now, why this is happening? Why does it work? Let us before do the analysis let us

run through a simple example for that right.

(Refer Slide Time: 27:05)



So, imagine these are the elements right. So, the color is the particular element id. So,

here we have stream of length say 1 2 3 4 5 6 7 8 9 10 11 12 12. Let us say stream of

length is 12 we have n equal to 12 and the true n equal to 4 on the 4 elements in here.

So,  first  z  is  initialized  to  0.  Ok now we get  the  blue  element  right  here  zeros  the

functions zeros return 0. So, here z is still 0 right sorry. Now first we get the red element

first, we get the red element and here zeros z is 1. So, therefore, we get. So, therefore, z

is  initialized  to  be  1  right.  Then  we  get  the  blue,  right  zeros;  0  therefore,  z  is  the

maximum of 1 and 0.

Therefore, it remains z 1, right. Then we get that red again does not matter remains at

one. Are you noticing something one again, it remains at one do you notice that if thus if,

if an element appears the second time or the third time it does not change the value of z

right that is very important criteria of the statistics that we are keeping. Now we get the

turquois the turquois blue for this one z is 0 1 2. So now, z becomes 2. And once it is 2

here again remains a 2 again remains a 2 again remains a 2 remains a 2 again turquois

does not change remains a, 2 now we are getting a new element, but that has said to be

that has zeros said to be one right, because right most one is at position 1.

So, therefore, 2 does not change this statistic that we are keeping that does not change

and here it does not change. So, therefore, at the end of the stream we get z equal to 2

and therefore, we did we return estimate 2 to the power 2 plus half, which is something

like 2 to the power 2.5. See this is not entirely accurate of course, because this problem

was very simple with this switches to dry run right. And this is how this is as simple how

simple the algorithm is, but now the major task behind us is to show why is this correct

ok

So, how can we do that?



(Refer Slide Time: 29:45)

So, before we try to analyze why this is correct ah, let us look a little bit into the space

usage of this algorithms. So, first of all what we need to think about is how big do we

need these bits  stream this  string of bits  to  be right.  That  if  you are mapping every

element to a stream of bits how big is the stream of bits it should how big the stream of

bits should d.

So, using something known as a birthday paradox, that you should definitely look up,

you can what you can say is that if the size of bits stream is at least let us say 3 log m

right. Then with very high probability every element gets a unique bit stream. That is, we

do not get collisions ok. And this happens with very high probability as long as the size

of the stream the size of this bit stream is bigger than 3 log n. Because, in some sense if

the size of the bit stream is bigger than 3 log n then the number of such possible bit

streams is like 2 to the power 2 to the power 3 log n which is m cube right.



(Refer Slide Time: 31:03)

So, refer the number of possible if you are mapping n thing is randomly into a universe

of size m cube number of collisions is a basically 0 right with very high probability ok.

So,  then,  but that  means,  is  that  in  order to  store the  bits  stream you also meet  the

algorithm meets store c log n right. Because when it gets an element it calculates the bits

stream for that. So, you keep c log m space. The only or the space that it requires is this

counter z that it is storing right; what is the size of that right: see the maximum value of z

only needs to be 3 log n right. Because remember what z is store storing, z is storing the

position of the right most one. So, the position because the bit stream because this stream

is of length l the position of the right most one also varies from 0 to l minus 1. So,

therefore, z only needs to store values from 0 to l minis 1 which means that it needs to

store values from 0 to 3 log n minus 1.

Therefore, the size of z only needs to be log base of 3 log n right. Which is let us say log

n. That is quite astonishing right. We only need to store a counter of size log log n. So,

therefore, the total space usage is really log n plus log log n right. It is very interesting,

but is it any good, we have developed an algorithm to that uses magically uses very less

space, but does it provide a good estimate and we do not know that.



(Refer Slide Time: 32:58)

So, what is intuition?

So, will do the intuition? In this in this in this lecture and we will postpone the actual

prove to the next lecture for this. So, the intuition for this is as is very simple. It says

suppose assumed to the hash values are uniformly distributed among these 2 to the l

possible bit streams. That is for every element right it gets a uniform at random chosen

ha a bits stream out of this 2 to the l possible bits streams.

So, because it is a uniform bits stream, the probability for a fixed element the probability

that the bit stream is divisible by 2 is half. Because about half the bit streams bit streams

are divisible by 2. About one-fourth of the bits streams are divisible by 4. About 1 by 2 to

the k of the bit streams are divisible by 2 to the k. So, what does it mean for a, but stream

to be divisible by 2 only.



(Refer Slide Time: 34:01)

It means that it has, if a bit stream is divisible only by 2, it means that it has somewhere

it has one, and then a 0 right. It has at least one 0 at the end for bit stream is divisible by

4 it is at least 2 zeros at the end. If the bit stream is divisible by 2 to the k it is at least k

zeros at end ok.

So, then see then; that means,  that  the position of the right most this  say something

position of the right most one right. We will get to the get to I mean making this precise

in our next lecture and also if you if you take if you take this k to be something like log

base 2 of n plus 1 right. The probability that a uniform chosen bit stream is divisible by is

divisible by 2 to the k for this value of k, is really 1 by 2 to the power log 2 base log base

2 of n plus 1 which is really 1 by n square right. Not base 1 by sorry it is 1 by 2 n it is 1

by 2 n not 1 by n square and; that means, that what you then say is that if we do not

really  expect  any  of  them  to  divisible  by  2  to  the  log  n  plus  1.  Ok  because  that

probability gets to be really small.

So, therefore, what it will mean is that that by tracking what is the maximum i such that

2 to the I divided it is v we can hope to get some estimate of how many distinct numbers

we have, we have sort of input it to our in to our stream of how many distinct numbers,

we have we have used in our stream.

So, let us sort of n now and in next class we will we will formulize this proof of the

Flajolet Martin.



(Refer Slide Time: 36:24)

So,  just  to  summarize:  in  this  class  we  introduce  the  streaming  model  to  as  useful

extraction of when we cannot store the entire dataset into memory. We also got to the

question  of  estimating  basic  statistics  of  our  data.  For  instance,  even the  number  of

distinct  counts.  And  you  say  that  even  that  is  really  non-trivial  for  instance  even

sampling based algorithms really  work simple sampling these algorithms.  We saw at

least one algorithm that that does the linear counting that uses order that.

However, uses order n space right. And now, we saw another very sort of magic like

algorithm, by Flajolet Martin for which we have got in intuition we have not got into a

actual proof of that, yet that is up will do in the next class.

Thank you.


