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Hello and welcome to our course on Scalable Data Science. Today’s lecture is on Bloom

Filters.  I  am  Anirban,  and  I  teach  at  I  teach  computer  science  engineering  at  IIT

Gandhinagar.
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So, we are still stuck with this problem of query, we have looked at hash tables right, but

again let us revisit what we have. We have we have talked about the problem of building

library, where we have a lot of books, but a particular user comes to you, gives you a

eyes bin or a book name, and has asked you whether this book is there in your collection

and you are wondering how to answer this question efficiently. You also could be the

designer of a network switch right that is up which has very limited memory. And now a

particular user have again comes and asks you, have you seen this IP have you seen any

traffic for this IP passing through this switch? And you have to answer this question more

or less accurately at least ok. So, how do we do that?



(Refer Slide Time: 01:26)

So, let us look at some simple solutions first. So, the solutions that we looked at last, in

last class was that of building a hash table. So, just to pin down the notation, we have a

universe size we have universe sized U, the carnality of U spherical. But now we are

only looking to store a set of elements n, that is much less than the carnality of U right.

And we have seen that what if we created hash table. So, hash table was of size m and

this  m  was  chosen  on  based  on  the  amount  of  memory  we  have  accessed  to.  But

regardless of m the space because we use chaining or something similar to that this space

that, you need is really n times log of the carnality of U right because each of the each of

the elements that you get is when you have an id and you have to store the id and the and

the size of the id is log of carnality of U and you are going to store n of them therefore,

the total space that you will use is least n times carnality log of carnality of U. 

Your query time however, is going to depend on your hash table right and if you happen

to use at least a nice hash function then your query, time can be order n by m you cannot

hope to make it much smaller than this right because there will because its I mean this is

the average log factor, and most of the and in expectation every entry of the of your array

m has this much load ok. The other extreme is to create a bit array of size carnality of u.

So, here you do not have you do not so, the ids, you know U in advance and you keep a

better a of the same size of that and what do you do? You devote one bit  for every

element of the universe. So, the space needed is of course, just exactly the carnality of U;

however, now you have reduced the query time to be order 1 right.



So, there is a tradeoff; there is a tradeoff that in creating hash table the space is probably

quite a bit less, but a query time is little bit more in storing a bit array your space is

potentially a lot, but a query time is only order 1 the question is, can we do better than

either of them?

(Refer Slide Time: 03:59)

So, it turns out that it depends right you cannot do better if you are not willing to commit

any errors right. So, let us think about what the what kind of randomizations and what

we did in the hash table construction. In the hash table construction we did use random

hash functions; however, these random hash functions or the algorithms that we created

using them never return an incorrect answer right because at the end of it we always say

yes or no depending on the comparison of the actual element ids ok.

So, the query time is a random variable right because the query time depends on how sort

of uniformly the hash function that you have chosen sprays the elements that are there in

the in the array right; however, it does not return incorrect answer ever, and these kinds

of  randomized  algorithms  are  known  as  Las  Vegas  algorithms.  The  name  since

historically I have no clear identify (Refer Time: 05:09) answer by, but that is what this

called.  That  is  when  you  do  not  return  an  incorrect  answer,  but  the  computational

complexity  of  your  algorithm  depends  on  the  randomization.  The  other  style  of

randomized  algorithms  and which  is  that  we look  at  now known as  a  Monte  Carlo

randomization algorithm.



So,  in the Monte Carlo randomization  algorithms we are allowed to return incorrect

answers with a small probability; and this probability let us call it delta a something that

the user will typically define to you right. So, the user will give you small probability

small target error probability delta and you are allowed to return incorrect answers for

this  probability  delta,  and  you  have  to  design  the  choose  the  parameters  of  your

algorithm so as to hit this target ok.

(Refer Slide Time: 06:07)
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So, here is what we will do. So, the data structure that we will look at to answer the

query question is known as a bloom filter, and this was developed by Burton bloom in

1970. So, bloom filter  again is a very simple data structure,  there is a bit  array it  is

basically a bit array, it is a bit array of size m ok, but now instead of one hash function

there are 3 hash functions h 1 to h k.

I am not telling you what k is right now we will get to that little later. But each h i is a

math from every element of the universe to again indices of the hash function, again

indices of the array 0 to n minus 1 that is mathematically speaking each hi is a math from

U to 0 to m minus 1 which is what this expression denotes. So, we will we might use that

later also ok. So, intuitively what we are going to do? When we when an element x arise,

we are going to calculate now h 1 of x h 2 of x and h 3 of x in this case k equal to 3 and

now we are going to look at this bits right B of h 1 of x, B of h 2 of x and B of h 3 of x

and do something like that. So, what you do with it let us see.
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So, what we do is when trying to insert an element x, we just turn on all these bits from 0

to 1 ok. That is simple this is one we are inserting, but what we do in the query right.

That when a query q comes right and I calculate the h 1 q h 2 of q h 3 of q and what we

do? I return yes if only one of them say yes do I return yes, if majority of them say yes

do I return yes only if all of them say yes. So, it is not clear that is not (Refer Time:

08:14) and next try kneel the down ok.

So, here is basically the entire the entire set of operations we can do with the with the

bloom filter. So, we start by initializing B very simply by setting B of I equal to 0 for all

the for all the positions. When a when an element x comes, when you are trying to insert

when you are trying to insert x in to into the into the bloom filter B, we calculate h i of x

for i equal 1 to k, and then we go it all this positions and set all of them to be a one that is

it  ok. The interesting thing happen as we saw when we are looking up, that given a

particular x.

Now, x in our query which may or may not have been inserted in the in the bloom filter.

Now, we are trying to say that now we are trying to answer the question that is x in the

set already has x been added to the bloom filter yet right and in order to do this here is

what you do? You first calculate the all the bits look at all the bits B of hi of x. So, now,

we have k bits, and we take the AND of these bits.



So, we do not look at any one of them, we do not look at the majority of them we look at

their AND of this bits. And with and of this bits return present if the AND of the bit this

bits is true, then you get return present and if the and say is false then you return absent

clear so. So, now, let us see let us try to do some analysis of this.

(Refer Slide Time: 10:01)

So, here is the simple you know statement. If the element x has been added to the bloom

filter. Then look up of B x will always return present and this is very clear right. Because

if the element x has been added to the bloom filter, then when we are adding it we have

turned on this bits already and no other addition no other insertion turns off this bits

because you have never turn off bits.

So, therefore, this bits once turned on will always remain on and therefore, look up of B

x will return present. So, this is very clear right now the interesting thing is the other

question. What happens if x has not been added to the filter before? Is it still possible that

look up of B x will return present? Yes, it is unfortunately and here is a simple example,

even probability constructs simpler examples though, that suppose we have 2 elements x

and y right. So, think of the blue arrow as the function h 1, think of the red as a function

h 2, think of the think of the green as function h 3. So, so x turned on these 3 bits, y

turned on these 3 bits and now a query comes. Now it is not very hard to see that if the

query is being is being not using h 1 to this position if the query is being mapped using h

2 to this position, and using h 3 to this position right in that case look up of this query



will return yes because of because x and y have turned on this x. So, this is unfortunate

though, but this is what we said that we can make an error the only question now is can

we bound  the  probability  of  this  error.  Can  we  say  that  this  the  probability  of  this

happening is really small.

(Refer Slide Time: 12:07)

So, and this is what we call a false positive right that we return the positive answer, but

that  is  false.  So,  what  are  the  parameters  of  bloom filter?  The parameters  are  the 2

parameters that are really at hand are the size of the bloom filter m and this mysterious

number k, which is the number of hash functions. So, just to sort of this (Refer Time:

12:34) check recall that if I were just using k equal to one that is really it is a normal bit

array right that is nothing interesting there going on. So, what is the effect of changing

this k? K cannot really be decreased to be less than 1, but what will happens when k is

increased? So, if you think about it really 2 things are happening.
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Increasing k, possibly makes it harder for false positives to happen right because look up

the when you call the look up functions, it looks at k bits and takes the AND. So, if k is

large then the chance that any one of this bits has been turned on by some other element

is going to decrease as k increases. So, therefore, that is a good thing right therefore,

increase in k potentially decreases the chance of false positives to happen or rather the

probability of false positives, it decreases the probability of the false positives; however,

it is not a straight forward unfortunately.

Because if you think about it, if you increase k then you are filling up more and more of

the hash table more and more of this bit array right. So, in extreme case if k equal to n is

even one element turns on all the bits right. So, therefore, increasing k is not always

good; and then the next question is that is there an optimal way to choose this k right?

Then is there a switch spot such that if I choose the k according to this particular value

right that sort of balances have these 2 effects, that sort of gives me some effects of sort

of decreasing the false positives in the look up as well as it does not, it may be does not

fill up all the increase. So, fast so. So, it is a way to choose k in a smart way right.
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So, in order to analyze this,  we need to do we need to analyze the event of what is

happening, when we call look up of B x right. So, if x has been inserted this nothing

much to do because we know that look up of the x will always return present; however,

let us look at what happens if x is not been inserted before, but now we are querying it

and so, we want to burn the probability that look up of B x returns present, because that

is the bad event that is false positive event ok.

(Refer Slide Time: 15:09)



So, I mean for this analysis, let us start out the assuming that h 1 h 2 h k are all fully

independent are all independent of each other we will talk about what happens if they are

not completely independent.

So, and let us also start out the assuming, that probability that for any that for any event

that for any of this h is the probability that h of i that the probability that hi of x equals j

for a fixed j and for a fixed x equals 1 by m for all x and j. That is all that really says is

that  even  any  x,  the  probability  that  it  maps  to  a  particular  it  its  equally  likely  to

following its equally likely to map into any of the positions of the array that is all this

says. So, under this assumption, when we have inserted n elements right suppose, if we

have inserted  n elements.  So,  we have turned on k time’s n bits  right  because  each

element insertion turns on k bits.

So,  now, and  this  k  bits  so,  for  choosing  each  of  these  bit  has  been  chosen  using

uniformly among the bits from 1 from 0 to n minus 1. So, now, let us look at the n the bit

the bit h i the position h i of x; now let us look at the position h i of x ok. So, what is the

probability thus that this bit is still  0? So, if this bit is still  0, the only way it could

happen is that all the k n insertions that are happened in until now have happened in the

other n minus 1 positions right? That that none of the kn insertions until now have try to

turn this bit to be on and the probability of that event is 1 minus 1 by m to the power k n

right  and  this  approximately  is  e  to  the  power  kn  by  m  and  we  will  use  this

approximation, we get this because 1 minus 1 by m to the power m.

You can write it as approximately e to the power minus 1 and therefore, 1 minus 1 to the

power kn is like e o the power kn by m right. So, this is a very tight approximation you

can do slightly better analysis than this, but this is what we are stick to.
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So, now we are saying that the probability of a single bit being 0 is e to the power minus

kn by m right. So, now, look up when we look up return present, look up will return

present if all the k bits if all the k bits h 1 of x, h 2 of x and until h k of x all of them say

1 right. So, the probability of that is that all of each of them are individual 1 and the

probability  that  any one of  them is  1  is  1  minus  e  to  minus kn  by m,  because  the

probability that it was 0 was e to the power minus k n by m. So, therefore, the probability

that h 1 of x the bit h 1 of x is one is 1 minus e to the minus kn by m.

So, therefore, the probability is that all these k bits each all of them are 1 is nothing, but

1 minus e to the minus kn by m to the power k ok. So, notice this is not entirely accurate,

because it is possible that h 1 of x equals h 2 of x; however, these are all marginal cases

and,  but  analyzing  this  marginal  cases  needs  a  little  more  heavy machinery  that  we

would not go in to for now let us just stick to this almost correct analysis so. So, now, we

have the probability of a false positives to be the probability that; to be the probability

that the look up of B x is present to be this expression 1 minus e to the minus kn by m to

the power k right. So, notice that this expression very nicely captures the 2 roles of k

right because as k changes, the inner expression the inner expression 1 minus e to the

power  minus  kn  by  m  increases  as  changes  one  way,  monotonically  as  k  changes

whereas, this to the power k definitely decreases.



So, the expression inside actually increases, but the expression outside, but the, but the

expression outside tends to pull k tends to pull the value of this of these particular the

power of k tends to pull the value down ok. So, the question is that is there a switch spot

can you choose k to minimize this probability ok.

(Refer Slide Time: 20:23)

So, now it is actually very simple, let us have a short hand notation let us write p to the p

equal to e to the power minus kn by m and minimizing a probability is the same as

minimizing the log of that. So, let us take the log of the false positives log of the false

positives is nothing, but this log of 1 minus p to the power k because p verses expression

and k come. So, it becomes k log 1 minus p ok. So, and if you plug in the value of; if you

plug in the value of k using the definition of p you get minus m by n log p log 1 minus p

ok. So, now, it is really simple question of calculus right, but we have going even lazy

what we will say? Let us just plot this expression log p times log of 1 minus p minus log

p tends log m of 1 that is p.

And there is a plot that I have generated in using from alpha is very easy to see that this

expression is minimized at the midpoint that is at p equal to half ok. You should really

take the derivative of this and (Refer Time: 21:32) 0 1 and then and check the check the

second derivatives and so on, but am just being lazy. So, this expression is minimized at

p equal to half, which means at the optimal value of choosing p and therefore, that of



choosing k is really p equal to half which means that k is m log 2 by n. So, here we are

using the natural base for log ok.

(Refer Slide Time: 22:00)

So, this optimal choice of k gives you a false positives that is 2 to the minus m log 2 by n

and this you just get by plugging in the value ok. So, now, if you want a false positive of

delta, but supposing you all are get an engineer and your manger is come to you and sort

of and ask you to design bloom filter for false positive rate of delta right. Now you know

what to do you get to use k and you have to choose m right. So, m and you tell him that I

am going to need this much I am going to need machine that that can hold this size of bit

array. In the size of m that you need is log one by delta time’s n divided by log square 2.

So, all of these you just get by plugging in the value of k and by plugging in the value of

m. So, for example, if you want one percent false positive rate, which is potentially very

small you only need seven hash functions and the total of 10 n bits right. So, now, what

we have is a data structure that has only constant times n number of bits right remember

n is not the size of the universe, n is the number of elements that we have understood

right. And you need something like a constant times that for a small enough of constant

and you need 7 hash functions.  So, at query time you only need to calculate  7 hash

functions of the query and you look these up. So, it is fairly fast.
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So, bloom filters have a have widespread applications whenever false positive rates are

tolerable. In fact, a very celebrated use is by was by this web browser chrome. So, what

it did do? It is it used to should have bloom filter to against for potentially malicious

URLs ok. So, this bloom filters.

So, suppose you type a URL in the in the browser I mean in the chrome browser right.

So, now, the chrome browser is going to give you a warning with typically still does to

say that, this URL is potentially malicious ok. So, how does it do that? What it does is

that it creates a bloom filter of the malicious URLs that it has and it shifts to each of the

clients it shifts to each here by (Refer Time: 24:14) has one of this potentially has one of

this filters. So, when you type this query, when you type this URL; this URL is checked

against this clients and bloom filter where the clients.

And bloom filters says no that this is not malicious then you can just go ahead, but if the

client  side becomes bloom filters  do not have false negatives.  But if the clients side

bloom filters says yes this is potentially malicious well it is at that point chrome sends

this URL to the server and does an actual check because and because the probability of

false positive is small right the number of times it is contacting the server, it decreases

right. It decreases I mean beyond this naive solution, if you are contacting the server with

every with every potential URL right.



So, similarly I mean it is used a lot in all these distributed databases such as BigTable,

HBase,  Cassandra.  What  they  have  is  that  they  have  their  data  columns  that  are

distributed  over  multiple  machines  ok.  And  now  Cassandra  for  instance  given  a

particular  given a particular  column right.  So,  suppose you are asking that  does this

machine contain the column right.

So,  rather  than doing anything else  Cassandra first  has  a  bloom filter  that  it  carries

around and it tries to answer yes no question using this bloom filter. Now there is bloom

filter says no, then that is it where the bloom filter says yes at that point Cassandra does

some more competitions in order to sort of 2 in order to decide whether to actual do a

disk look of for that particular column in this machine. It is also used in bit (Refer Time:

25:53) valets synchronization between one point of the details of that so.
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So, all very nice, but there is one particular problem that you might already have noticed

what do we do, if you want to delete an element right? And I never showed you what to

do for deletion improve filters and it is not surprising that in bloom filters you cannot

delete, in ordinary bloom filters you cannot delete because once you delete right your

analysis of our analysis of the optimal k goes away.

Because now, although I mean you might have false negatives also, because although

you have inserted an element may be you deleted one of the bits you made one of the bits

to be to be 0 when you delete  a some other element  right.  So, therefore,  this is  not



obvious a solution has given in terms of this counting bloom filter, and it is very intuitive

or it says is that ok. Previously each element of the bloom filter is to contain a single bit

let us now add to it a small counter. So, think of it as follows that we have the we have

the array, we have the array and now we have a small counter of let us say 4 bits with

each position of the array ok. So, now, when we add an element right we will go to the

counter and we increment that particular counter right.

So,  will.  So,  for  every  i  from 1  to  k,  we will  go to  the  corresponding counter  and

incremented by 1. Now when we going to delete an element again we will go to that

counter  go to this  corresponding counters  and decrement  this  counters  by 1 and this

counters will be small, this counters will be will be like 4 bits per counter ok. So, it is

possible to show using analysis that is almost similar to that of bloom filters little more

complicated that, that this is actually fine using 4 digital counters is fine in most case

false negatives can happen, but with very small probability and false positives analysis of

false positives is similar to that our bloom filters.

(Refer Slide Time: 28:16)

So, and there are a lot of other very interesting extensions for bloom filters. Here is the

very interesting question that, we used for every input element that comes we hashed it k

times using k hash functions right can we do with hashing much less hashing may be on

with 2 hashes? Since possible actually a very interesting (Refer Time: 28:38) case of

bloom filters is when you are as you mention these when it is used in the distributed



systems. In that case sometimes what happens is that, you want to compress this bloom

filters and sent it across right.

Because in the in case of Cassandra, if Cassandra was to storing that that this machine

has these columns of the data and in case of bloom filter using that, it might found a store

that machine might find send that bloom filter to other machines after compression, it

answer that bloom filters can be compressed very nicely. Furthermore there are other

structures the theoretically at least, use less space less randomness and sometimes less

memory look ups. However, most of the structures are really not very practical yet, they

have been I mean they kind of work for ranges of error probabilities and the data size

that are I mean for all practical purposes bloom filters, that the performance of bloom

filters are still bits the performance this more theoretical structures. However, if you are

interested in research this is away, this is an excellent area to look into and.
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The primary  reference  for  this  lecture  is  the survey of  bloom filter  by the  excellent

survey by Andrei Broder and Mitzenmacher and the some of the used cases and pictures

that we are drawn from this particular block site. There also very nice analysis of bloom

filters in the in the book Randomized algorithms. So, that is it for today.

Thank you.


