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Hello all welcome to the 24th and last lecture of NPTEL course on scalable data science.

So, today we are going to conclude the course so, we are not going to learn anything

new, but we are just going to review. 
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So, so we are going to review the content that we have covered in this course, then we

are going to discuss some applications in the context of each of the things are each of the

topics  that,  you  have  covered  in  this  course  and  also  the  extensions  to  the  power

techniques. And then, we are also going to discuss some of the next steps, as you all are

probably aware that this area is very new area. 

So, much of the subjects covered in this course have been developed in the last 10 to 20

years and many of the topics are still under development and many of the topics are still

finding newer and newer applications. So, many of the topics covered in this course are

kind of actively under research so, we will see some of the next steps, in some of the

cases that that the community is taking ok.
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So, as we all know data science is an important subject in today’s world, because all the

decisions, all the actions everything is now becoming data driven. And we are sort of in

digital or data driven age and also you know everything is connected so, that also helps

in doing data driven decision making. 

So, but what is now become more important is that the size of data sets have become

much  larger,  again  due  to  advances  in  computing  technology,  advances  in  sensor

technology, networking etcetera. So, earlier maybe there was people use to deal with kilo

bytes are at the maximum megabytes of data sets even, you know 10 or 15 years back

people use to typically deal with these sizes of data sets. 

But, now it is very common to deal with gigabytes of data sets ok. So, it is now become

very important to be able to do all the data science that, you want to do on very large data

set. Another aspect of modern data sets is kind of complex data sets ok.

So, for example consider the data set of user post on social media.  So, so you know

earlier the data sets used to be somewhat structured data sets right so, every for every

data point there are these fields. So, for example, for every user there may be a post and

there maybe users age etcetera, but now considered a user post let us say on Facebook

ok.  So,  the  post  may have  some text,  but  the  post  may also  have  something  like  a

timestamp ok. So, and then the posy may also have some images and the post may be

directed at few of the friends of this user ok. 



So, all these things are very different types of data, so, the first type is the unstructured

textual  data  that  people are  putting ok,  where you have to use some kind of natural

language processing techniques, or similar techniques to process the data. 

Then there is the image so, images is another kind of data which is again some kind of

unstructured data, but you need to use a different set of techniques something like and

image  processing  techniques  for  analyzing  that  kind  of  data.  Timestamp  is  a  single

number for each post, but it induces a dependence on the data, so, for example a post

which has a larger timestamp than another post came after that post. 

So, this kind of a sequential nature of data appears, because of the timestamp also how

close, how much time after a particular post did another post appear ok. And finally, the

post maybe the so, this the previous type of data is called temporal or sequential data ok. 

 And finally, you know people may referred their post to some of their friends or they

may mention some of their friends are depending on the platform, you know they may

quote some other post from some other friends ok. And this is a very different kind of

data, because this not only tells you about the person who is posting, but also the people

the other people who made have may have made their own post and so, on and so, forth

ok. 

So, all this is making the data sets more complex and interconnected. So, there is no you

know the data sets are becoming multimodal so, there is image text then the data sets are

interconnected. So, posts of one user is connected to post of another user, but all this

things are coming up. 

So, both these aspects actually calls for a new set of tools so, you cannot so, you can only

use the old set of tools to process this data to some extent, but if you want to take full

advantage of this kind of data ok, which are large and very complex data sets. Then you

have to learn new set of tools and in this course what we have tried to do and people

have realize this and people have developed these new set of tools over the past let us say

10 or 20 years so, past few decades and this set of so, in this course what we strive to do

is to provide you and introduction with you know this set of tools ok.
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So, the first class of tools that we talk about is the stream processing or sketching ok. So,

the setting is here is that data arrives one by one ok, so, it could be because the data is

coming over network, it could be because the data is a user input process. So, the data

user is actually inputting the data one by one in a sequential manner something like user

is posting his messages one after the other. It could be because the data is coming from

other devices maybe you are you know now you are in a IOT world.

So, you are in a interconnect you are in a world where devices are interconnected and

each of device these devices are running their own algorithms and so, you know you

might be writing a program for your fridge, which is connected to many other devices

like a cell phone your maybe power supply and so, on and so forth.

And those devices  may be sending some data  to your fridge ok.  And then there are

sensors of course, there are many a times data comes in a streaming manner from very

sensors so, these are all sources of streaming data ok. So, in this setting basically you are

allowed to store only a summary of the data.  So, this is because mostly because the

device on which you are processing the data a is not suffice does not a sufficient memory

to store all the data. So, it is too large the data is too large and here, the task is to answer

a query at any point in time.

So, the query could be for example, how many distinct elements have passed the stream.

So, and the characteristic of this kind of algorithms is that are typically you know an



approximate  answer  to  the  query  is  sufficient  you do not  have  to  answer  the  query

exactly you can give an approximate answers.

So, for example you may not so, one cases that you are also there could be two reasons

one is that, you need not provide exact answer see only want rough estimate, or it could

be known that with certain memory constraints you cannot provide the exact answer. So,

both these are reasons for going for an approximate answer ok.
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So, what are the queries are the problems? So, the first set of problems is that that we

have discussed is sampling the data from a stream. So, the idea is that there are different

types of items which are coming in a stream so, and you have to construct a random

sample from that. So, for example there are you know IPs arriving at a router and you

have to construct a random sample of IPs that have come to this router. Now, this set of

IP, should follow the same distribution as the original distribution in the entire stream so,

that is the problem. The second type of problem is filtering a data stream.

So, here you may have to select so, your data stream may have many different types of

elements or many elements having many different properties. So, you have to only select

those  elements  which  have  a  certain  property  say  x  ok.  So,  maybe  you  are  getting

numbers in a stream and you have to you know select numbers which have appeared at

least once before or something like that ok. .



The second the third type of problem is counting distinct elements, so, basically again

your  elements  are  arriving  in  a  stream and  you  want  to  know  how many  different

elements have come. So, so this is the problem and the final problem is finding frequent

item so, you may have to estimate frequencies of the k most frequent items.
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So, these are the problems that we have delft with and what is what are the solutions that

we have discuss.

So,  for  the  sampling  problem  we  have  described  the  reservoir  sampling  algorithm,

basically the idea is that when the items arrived in a stream, you store and item with

probability of it being sample. So, you update based on the number of items you have

already seen,  you update the probability  of retaining this  item so,  that  is  the trick is

reservoir sampling. Similarly filtering a data stream the idea is that. So, so that so the

technique that we have described is the bloom filter.

So, the basic idea is that you hash the items to you so you hash the items and then each

item gets hash to a particular  bucket.  And then you maintain the filters  on this  hash

buckets rather than items themselves, because the number of items can be very large ok.

So,  instead  of  maintaining  the  filters  that  whether  a  particular  item  will  should  be

included or not, you meant on the item you maintain the filter on the hashed value of the

item. And because there may be many collisions so, you use many hash functions instead



of one ok so, that is a bloom filter technique. The third problem is the counting distinct

items and, you have you have learnt many things for this the one of the techniques you

have learnt is the Flajolet Martin sketch, which basically stores the highest number of

trailing 0s.

And from that it can give you an estimate of how many distinct items have so, it so,

highest number of trailing 0s bits in a hash of the items ok. So, each item comes to hash

it  can you store  the highest  number of  trailing  0 bits  and from that  you can get  an

estimate  of  how many distinct  items  have  passed  through the  stream.  And  the  final

problem that we have describe this finding frequent items and, again there is a very rich

literature on this and we have also described many algorithm.

So, one of them is for example, the Misra Gries algorithm, where you basically store the

frequencies of are you strive to store the frequencies of top k items. And whenever new

item is not found, whenever you see a new item, you know and you do not find it in the

top k list, you reduce the count of this new of the items in the current list. And when the

item  count  of  existing  item  become  0,  then  that  position  become  free  ok.  So,  you

essentially a sort of charge all the items for you know being in the top k list, but not

appearing in the stream ok.
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 So, what are the applications of this right so, for example, take the first problem right so,

sampling  data  from  a  stream  so  consider  the  problem  of  showing  a  subset  of

representative tweets right.

So, you have your tweeter timeline and tweeter wants to show you some set of tweets,

but not the entire set of most recent tweets ok. So, it only wants to show subset of tweets,

but, then it wants to show them you know in a manner such that the fo[r]- the distribution

of the tweets that appear on your timeline is sort of representative of the distribution of

the entire set of tweets that appear on your timeline ok.

So, this is the problem of reservoir sampling so, you want sample some representative

tweets from your actual time line to show on your screen ok. Now, the second problem is

filtering a data stream right so consider the stream of all new so, many news agencies all

over the world you know polling in which many news say you consider for example, a

news aggregator like Google are Yahoo are somebody and may all the news agencies all

over the world, they are polling in with news articles. .

Now, you have let us say subscribe to certain kinds of news articles right. So, you want

sports, you want you are maybe music, but you do not want politics or something like

that ok. So, how do you know so, and every user has mentioned this kind of preferences

for their. 

So, the problem is to actually send a news items only on the subscribe topics to each

user. So,  you have to  filter  the  originals  large  stream of  news item,  you know in  a

personalized manner based on the subscribe topics or maybe subscribe websites with this

is the problem of you know so, you need to solve the problem of filtering a data stream

in this case. 

The third problem is that of counting distinct item so, for example, switch you know it

sees many IP addresses, it may want to access it in it is own importance are how many

different IP is are how many different computers are routing their packets through this

particular switch it is so, high.

So that means, it wants to know whether it is a it is a very important central half position

or is it somewhere in the periphery of the network so, that you know it only gets a fuse



are packets from a few IPs ok. And so, this is this is the problem of counting the number

of distinct items that pass through that switch ok. 

Similarly so, the final problem is that are finding frequent item. So, for example, you

know you want to show trending tweets or trending searches so, you know tweets get re

tweeted so, every tweet has a re tweet count and searches get saying search gets repeated

many time by many different people. So, certain tweets and certain searches are trending

that is these are beings tweeted or search very frequently, let us say in the past 5 minutes

or past half an hour are so, and you want to find this right.
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So, this is the and you may want to find top 10 search tweets are top 10 search searches

and this is the problem of finding frequent items. . So, so this community is also trying to

extend itself. So, one of the direction it is trying to extend itself is combining search

queries ok.

So,  for  example,  you know instead  of  saying that  you know I  want  to  search  for  a

particular  I  want  to  filter  on  a  particular  topic  you  may  say  I  want  to  filter  on  a

combination of topics or you know, one can ask a combination of queries ok. And so,

basically people are looking at linear sketches, where you know it is known that you can

combine two different sketch linear sketches to form a sketch of for the combined quarry

ok.



So, these are some of the things people I have done in the past ok, another place where

this online setting is or which is the term that machine learning people used for the

streaming setting is in large scale machine learning, where are you know many a times

data is you know there is a lot of data hours for some reason the data is coming in an

online manner or a streaming manner. And you want to train machine learning models on

this kind of data. 

So, this is a very active area of research in machine learning and some of the ideas are

borrowed from this streaming algorithm settings.  And also there are some theoretical

guarantees, which are given for as many online algorithms whose background basically

originates in the techniques that we have described here. And one special technique here

is an adversarial setting, where you know an adversary make give you know certain data

or certain information in a streaming manner you know you know one after the other

manner and you have to optimize your own objective.

And the adversary is trying to make you not optimize your objective ok. So, all these

things are very also or these setting are a very high areas of research and important areas

of research. 
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So, the second broad class of techniques that I am that, we have described is the locality

sensitive hashing class of techniques and also some kind of dimensionality  reduction

techniques  come  together.  So,  what  is  the  problem of  locality  sensitive  hashing  so,



basically you have to find near neighbors to a particular data point ok. So, this could

happen because, there are lot of data points so the yeah so, the problem is challenging

maybe because there are lot of data points, or maybe each of these data points are very

high dimensional and calculating the similarity itself  is very difficult.  And in both of

these cases the simple naive algorithms are very expensive ok.

So, the application can include for example, similarity search so, you could do a image

search,  now nobody wants to  retrieve the exact  same image ok, that  is  instead what

people want to do is they want to retrieve similar images to a particular input image ok.

And this is an example of similarity search then people want to go anomaly detection.

So, for example, you have a certain transaction and you want to quickly know, whether it

is  an  anomalous  transaction  are  not.  So,  want  to  find  similar  transactions  to  this

particular transaction very quickly, so if you do not find any similar transaction, you can

think that it is an anomalous transaction. 

Another application could be plagiarism detection so, either it could be in some search

some sort of documents, papers or it could be in websites, or other content where you

want to know given a piece of content, whether this content is copied from somewhere or

part of this content is copied from somewhere or not ok. So, in this case you want to

basically search for similar content among the other content that you may have and you

may want to detect that, whether this content is plagiarized or not, another application is

for example, clustering where for many clustering algorithms. So, you may have to do all

pair nearest neighbor search so, for every they point in a data set, you have to find the

nearest points among the other points ok.

So, example is for example, k means algorithm ok so, you have to find the nearest points

slow given point. And again you can use something like a locality sensitive hashing if

your data set itself is too large. And then of course, there are applications in machine

learning like k nearest neighbor classifiers.
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 So, what is the idea the idea is that you know for exact search a many a times use

hashing right. So, if you want to find all the entries in a list with the same key value, you

just hash the keys and you create a hash lists and then you do an exact search ok. So, so,

the  idea  is  locality  sensitive  hashing is  simple  can  you utilize  collisions  to  measure

similarity ok.

And you do that by defining a family of hash functions rather than a single hash function

ok. So, this can be done for many similarity measures also we have described Jaccard

milite t L2 similarity etcetera. And the key idea here is that you can use many such hash

functions from the family of hash functions. 

So, what happens is when you do so, you do two types of operation you do either and-ing

or or-ing operations the and-ing operations makes the probabilities lower for, but then it

also make the probability is lower for nearby objects or similar objects the probability of

it them being retrieved also become lower. So, then you do a or-ing operation to make

the probabilities of nearby objects higher. So, you can adjust the ratio of the number of

and-ing and or-ing operation to get a kind of a threshold at which you want to stop. So,

you can then only retrieve objects with certain similarity threshold ok.
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So,  next  improvement  on  this  was  to  use  what  was  the  multiprogramming  hashing

problem is to use basically properties of the hashing function. So, what you do is so, the

problem with LSH, so, as we all understand LSH is a scheme for you know space time

trade off.

So, you create large you create a large data structure, typically it is quite large and, then

you instead of do linear time search over the points you can do sub linear time search ok.

So, here the idea is that  can you reduce the size of the data  structure by computing

probabilities  of  points  being  hashed  into  nearest  near  buckets.  And  then  utilize  this

probability to sample points from adjacent hash buckets as well ok. So, this reduces the

basically the number of hash buckets are the number of hashing functions that you have

to use dramatically ok. 

And the final improvement that we saw is can we learned the hashing function itself. So,

for example, if the input is similarity matrix and you do not have data point, but instead

you have a similarity matrix, can you calculate code vectors for this hashing points such

that the hamming distance between this quotes actually gives you the similarity. And

then you can use the you know the LSH scheme for over hamming distance to sample or

to find the nearest neighbor efficiently for this similarity matrix ok.

And yeah we so, the basically the spectral hashing techniques calculates relax solution to

this problem.
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 So, so what are the next step so, the next so, firstly this hashing trick has been used

heavily  in  machine  learning.  So,  one of  the ways it  has  been used  is  in  the  feature

hashing  which  has  been  used  for  dimensionality  reduction.  So,  you  can  hash  many

features into one bucket ok.

And this may cause the collision of features, but hopefully the collision stone result in

much degradation of performance. So if you have high dimensional data this is one way

of reducing the dimensionality, for you know doing machine learning effectively on high

dimensional data’s. The second trick is that of model hashing ok so, with the advent of

deep learning and all these techniques.

Now, one of the things that has happened is model sizes have become very large ok. So,

so how to reduce so, but you may want to run these models for example, on a cell phone

which has low memory are you may even want to train some of these models on low

memory ok. So, the solution to this is to hash the model parameters so, if you have lets a

large number of model rates, you can hash this model rates into some hash buckets. So,

smaller number of hash buckets and then store a one value per bucket ok.

And then you can so, basically you can train for example, neural networks in the memory

constrained manner, using this data structure of hash model rather than the entire original

model ok. And an extensional  that can be the winner takes all  hash, which basically

updates weights of parameters which lead to large activations of neurons.



So, instead of you know so, this allows basically instead of hashing weights randomly,

this  allows  in  some sense  weights  which  cause  large  or  large  activations  of  certain

neurons to be preferably hash together ok. So, these are some of the recent developments

in this particular area.
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 The third a for a broad area, that we have covered is the big data platforms area and the

setting is  of course,  that  you have huge data  you have you have to  do a distributed

storage and processing and we have described the  hadoop distributed file system for

distributed  storage.  And  the  map  reduce  framework  for  distributed  processing  and

basically  the motivation behind this  kind of frame work is  that first  the programmer

should find it easy to use.

So, for example, programmer does not have to you know take care of how to distribute

the data, or how to distribute the tasks and the programmer should not have to take care

of for example, fault tolerance and think like that. And also the programmer should not

write all the distribution code like you know. So, there should be a less coding effort ok

and so, at the same time the framework where design with flexibility in mind that, it can

you know process unstructured data like text, images etcetera.
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 Now so, how do so, this was the first set of big data platforms and these were designed

about maybe 10 years back now, more than someone more than 10 years back 15 years

back. And also there problem was that they had a limited expressibility, because the map

reduce  framework  could  express  only  certain  types  of  programs  and  they  were  in

efficient  for  certain  types  of  processing  so  for  example,  iterative  and  interactive

applications use to runs slower on map reduce ok. 

So,  these  problems  were  basically  allocated  by  another  platforms  spark,  which  was

designed about 7 years back and became matured about 5 years back. And then so, the

retain advantages of map reduce they do not lose anything from map reduce, but they

add in memory processing they add workflows and the integrate in into scalar ok.

And so, this provides with hugely more expressive platform, for expressing your big data

computation  and the  key innovations  there  were basically  directed  a  cyclic  graph to

describe both data and computations and basically, spark could optimally determine you

know the both the so, what subtask to perform and how to schedule them ok.
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So, this concept  of dag processing has now cotton a lot  and many of the high level

system for example, I will describe one system which is the tensor flow ok. So, this

system is become very popular for deep learning and this system also uses the same

concept  of  using  that  to  express  processing,  you  know  also  sometimes  for  bulk

transformations to express processing. 

So; however, tensor flow for example, uses states for each note and hence it loses the

fault tolerance, but works very well in practice ok. And then the spark itself has added

many specific features something like stream processing, SQL type queries data frames

so, basically for optimize processing or vectorial data and also some amount of machine

learning libraries. And the other important area of research has been how to put many of

the machine learning algorithms into the spark framework.

So, for example, how can one do distributed optimization on spark, how can one write

recursive  programs  in  spark  for  example,  can  be  trained  decision  trees  using  spark

etcetera and some linear algebra applications like matrix multiplication matrix inversion

etcetera.
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 The fourth area that we describe is that have scalable optimization and, we have mainly

describe two types of scalable optimization techniques one is distributed, where which

are useful when there is too much later to compute the objectives in a single machine and

data is a or data is collected in a distributed manner or there are some privacy concerned

concerns ok. 

And the final parameters should be available to on to all. The second setting is the online

optimization, where the data required for completing the objective function is arriving in

a stream again could be because of any number of reasons write memory is too small and

the objective function is some over certain data points ok. And again the final parameters

should be of the optimization algorithms should be close to actual parameter.
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 So, for the distributed setting we have describe the ADMM method basically the key

idea, here is that you write the optimization problem as a equality constraint problem

with many variables for one corresponding to every in distributed note. And then you

design updates which decouples the variables and the so, it actually decouple just the

variables are the parameters.

So,  decouples  the  variables  so,  the  updates  two variables  are  not  coupled  with  one

another ok. So, this is the key idea the on the in the online settings, we have describe

various stochastic gradient descent algorithms. And we have so, the key idea here is to

you know to design the updates such that they converge in the long run, but do not take

two few iterations to not even explore the space in a good enough manner ok. 
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And there are many advance mentioned extensions like mini batch clearly normalization

momentum etcetera, which we have discussed briefly. In the last technique that area that

we have describe is scalable clustering and here, the challenge was that you know the

original k means clustering technique was not optimal. 

So,  there was so,  first  to describe the k means plus plus which basically  provides  a

sequential sampling algorithm, which guarantees approximately that the solution that you

get is someone close to optimal, but the problem is that this is a sequential sampling

technique. 

So,  next  we  describe  mini  batch  kind  of  variant  where  we  over  sampling  every

distribution. So, that basically we can do it with fewer number of iterations so, original k

means plus plus would require k iterations to sample the k initial  point, but the new

update would require much fewer iterations. So, with that we are we conclude this course

and thank you all very much for your attention.

Thank you.


