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Hello students, welcome to the NPTEL course on Scalable Data Science Lecture number

4. Today we are going to discuss about the Background on Optimization. I am Professor

Sourangshu  Bhattacharya  of  Computer  Science  and  Engineering  Department  IIT,

Kharagpur.
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So, the outline of today’s lecture is going to be, we are going to discuss definition of an

optimization  problem,  the  properties  of  optima,  some  algorithms  for  differentiable

objectives.  Then  we  are  going  to  discuss  convex  functions  and  the  concept  of  sub

gradients, then we are going to briefly describe the subgradient descent algorithm. And

finally, we will  discuss  the stochastic  subgradient  descent  algorithm which is  highly

useful in the context of machine learning.
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So,  what  is  optimization?  So,  the  optimization  is  a  field  that  deals  with  finding the

minimum or the maximum value of an objective function, let us say f 0 with respect to

the  arguments  x.  So,  this  is  the  objective  function  f  0  of  x  and  we  want  to  either

maximize or minimize. In this particular case, we are trying to minimize the objective

function with respect to the arguments x. Now, the other condition is that the arguments

must satisfy some constraints. So, there can be two types of constraints. 

So, this constraints are called inequality constraints, where the constraints are of form fi

x is less than or equal to 0 for a certain number of functions, say i is equal to 1 to k and

this constraints are called equality constraints. These are inequality constraints and these

are equality constraints. This is also called the general form of optimization problem. So,

some examples are, for example here f could be function of x and y two variables. And,

the function could be something like x square plus 2 y square and the constraints could

be something like x is greater than or equal to 0 or for example, the constrain set could

be something like x is between minus 2 and 5 and y is greater than 1 or the constraint

could something like x plus y should always be 2.
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So, the question comes in this course why do we need to discuss optimization and the

answer is that most of the machine learning problems or many of the machine learning

problems involves some form of optimization or the others. So, for example, if we take

the problem of linear classification, then it can be solved using an optimization problem

like this. So, this formulation of linear classification is sometimes called Support Vector

Machines.

Another  set  of  problems  which  are  very  common  in  machine  learning  is  to  solve

maximum  like  to  estimate  parameters  of  a  probabilistic  model  using  the  maximum

likelihood paradigm and again that happens to be an optimization problem of this form.

Again there are problems in unsupervised learning like K-means clustering which also

involves  solving  the  optimization  problem  of  this  particular  form.  So,  this  appears

multiple times in many machine learning context, ok.
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So,  as  we  have  already  discussed  any  optimization  problem  has  some  objective

functions. So, in the previously described optimization problem, the objective function

was the f 0 of x, ok. Now, the first thing that decides how we can solve an optimization

problem is the type of objective function. So, there are roughly two types of objective

functions we can think of. First one is a unimodal objective function where there is only

one optima. So, as you can see here there is only one minima, whereas here there are

multiple maxima and multiple minima. So, these are some of the minima and these are

some of the maxima,  ok. So, this  kind of an objective function is called Multimodal

Objective Function.

Now, most optimization algorithm work on the assumption that the objective function is

a unimodel objective function and in such cases, the optimization algorithms tend to find

what is called a local optima. So, something like let say this is this point would still be

called a local maxima; even though clearly this point has a higher value of objective

function  than  this  point.  The  global  optima  is  the  best  or  the  highest  in  case  of

maximization  problem  and  lowest  in  case  of  minimization  problem.  So,  the  global

optima is the best of all local optima.
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Now, roughly there are all the optimization algorithms can be divided into two classes.

The first class is called the derivative based optimization algorithms or also called the

gradient based optimization algorithm. So, in order to use this kind of an optimization

algorithm, the objective function should be differentiable and in that case the algorithm is

able to determine good search directions, ok; so which directions to move according to

the objective functions derivative. So, examples of these kinds of methods are Steepest

Descent or Gradient Descent Newton’s method, Conjugate Gradient, etcetera 

These  methods  are  generally  much  faster  and  are  much  more  widely  used  than  the

second type of objective function. The second type of objective functions or optimization

algorithms, sorry do not make such assumptions that the objective function should be

differentiable.  However,  they  generate  the  possible  solutions  in  a  systematic  manner

from the information that they have gathered till  now and they search over the entire

optimization  space,  ok.  So,  some  of  the  methods  include  Random  search,  Genetic

algorithms,  Simulated  Annealing  etcetera  and  as  you  can  see  many  many  of  these

algorithms actually try to find the global optimum rather than the local optima. However,

these are generally slower than the derivative based methods.
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So, in this lecture we will mostly concentrate in gradient based algorithms as those are

the  most  practical  and more  highly  used.  So,  in  order  to  discuss  the  gradient  based

algorithms, first we discuss what the gradient is. So, the gradient of any functions f from

R n or n dimensional Euclidean space to R is some of is denoted by this delta of or

inverse delta of f and it is defined like this. 

So, it is a vector of n dimension, where the first dimension is the partial derivative of the

function x with or function f with respect to x and so on and so forth, ok. Do this as an

example. So, this is the partial derivative with respect to y direction and this could be the

partial derivative with respect to x direction and when you put these two together, you

get the gradient of the objective function, ok.
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Now, the first result which is one of the most important results of optimization is that for

any function f which is a smooth function,  basically which sort of means that it  is a

differentiable function, continuous and differentiable function; f has a local minimum or

a maximum at a point p. So, let say this is the point p, f has a local optimum around this

point of the gradient of p is equal to 0. 

So, if the gradient of p around this point is exactly equal to 0, then this is a local optima,

and this is true because what we can see is that gradient of p actually gives the direction

of the normal at the point p and if this normal is and also, the gradient of p gives the

direction of maximal descent as we shall see the direction of maximal ascent or maximal

descent  at  a certain  point  p.  Hence,  if  gradient  of p is  0,  it  implies  that  there is  no

direction of maximal ascent.
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Another important quantity in case of differentiable functions is the Hessian matrix. For

Hessian, for defining Hessian matrix, firstly the gradient of f has to be a differentiable

function. If that is the case, then we can write the matrix of second derivatives of the

gradient  of  x  like  this.  So,  the  i  jth  entry of  this  matrix  is  derivative  of  the  double

derivative, the double partial derivative of f with respect to xi and xj. So, for example,

this is the entry 1 2. 

So, first row and second column and as you can see it is the derivative of f with respect

to x 1 and then, with respect to x 2, and one can show that it does not really matter what

order you differentiate  and hence,  this  Hessian matrix  is  always a symmetric  matrix.

Now, the important result here is that if the Hessian matrix is positive, semi definite or

positive definite rather, then at a certain point when the evaluated at a certain point, then

if that point is local optima, then that point will be a local minimum and if it is a negative

definite, if Hessian matrix is a negative definite, then it will be local maximum.

Now, there are points called saddle points as shown here, where the derivative or the

gradient is 0. So, even at this point the gradient of f at p is 0. However, as you can see it

is neither a local optimum nor a local minimum. So, this will be reflected in the Hessian

matrix being indefinite.
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Another important issue is how to incorporate constraints into the objective function. So,

for example, if we have a general optimization problem of this form minimize f of x with

respect to, such that g j of x is greater than or equal to 0 and h k of x is equal to 0. So,

these are the inequality constraints and these are the equality constraints. Then, we would

like to find the global minimum and one way to find the global minimum is to use the

Lagrangian function which says that, so it uses some extra variables. So, in addition to x,

the Lagrangian function is also a function of theses vectors u and v which are also called

Lagrang multipliers and these extra variables penalize the violation of these constraints.

So, for example, in this case if g j of x is not greater than 0, that is less than 0 and in this

case u j is greater than 0, then the objective, the total Lagrangian function will actually

increase by u j times g j of x. So, it will increase by u j times g j of x and this could be

reduced further by satisfier, by satisfying the constraints that g j of x is actually greater

than 0. Similarly, in this case if this constraint is not satisfied, then one can choose v k

such that the objective function can be reduced further. So, this is the idea behind. So,

this idea is formalized in what is called KKT conditions or Kuhn Tucker conditions and

the conditions are given here.
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So, basically this condition is called the First Order condition, which is saying that the

derivative  of  the  Lagrangian  with  respect  to  x  should  be  0.  And this  conditions  are

satisfied or these two conditions are derived when we take derivative with respect to u j

to be greater than or derivative with respect to u j and set them to the appropriate value.

So, the in case of h k, it has to be equal to 0 and in case of g j, it has to be greater than or

equal to 0 and the final condition is that what is also called the complimentary slackness

condition. This says that basically u j times g j of x should be equal to 0 and this is the

condition on the Lagrange multiplier. So, if these conditions are satisfied, the point x is a

local optimum, ok. So, this is one of the ways of incorporating constraints while solving

an optimization problem.
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Now, we go into algorithms for solving this optimization problem. So, the first algorithm

we discuss is called the Gradient Descent algorithm. So, suppose we have an algorithm

function like minimize f of x, the algorithm takes an input x 0 which is an initial point.

Now, the algorithm work iteratively or it works in steps and then, the steps are executed

many times. So, the first step you set i is equal to 0. Now, if xi which is x 0 in this

particular case at this point if the derivative of f of x is 0, then we stop because we have

already reached local  minima,  otherwise you compute a search direction.  So, a good

search direction is in case of minimization problem is the negative gradient direction,

since this is also the direction of steepest descent ok.

So, once we have computed the search direction h i, the next step of the algorithm is to

compute a step size lambda i, such that if you move towards the direction h i from x i by

an amount lambda i. So, if you are x i, you move in the direction h i by an amount

lambda i, you get the new point which is x i plus lambda i times h i and you compute the

objective  function  value  f  at  that  point  and  you  minimize  this  over  all  lambda  and

whichever lambda minimizes, this is the new lambda i. Then, you set x i plus 1 is equal

to x i plus lambda i h i. So, you basically move to this new point and you set i is equal to

i plus 1. So, you proceed in this manner to the next step.



(Refer Slide Time: 21:15)

So, this shows trace of the optimization algorithm being run. So, what you see here are

the contours of the objective function. So, this is the starting point. The algorithm starts

from this point and moves in this direction, reaches the next point, then computes the

gradient direction, moves in this direction, reaches the next point and keep doing this

until  it  reaches the optima which is this  point ok. So, these are the steps of running

Gradient Descent Algorithm.
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Now, gradient descent algorithm has a problem. So, what is the problem with gradient

descent algorithm? So, the main problem with the gradient descent algorithm is that at a

given point  even though the gradient  direction is  giving the direction of the steepest

descent or the optimal descent. For example in this point it is pointing to this direction

which is the direction of the optimal descent. 

However, the actual optima is in this direction. So, we find the optimal point in this step

here and then, at this point again the direction of descent is in this direction, pointing in

this direction and so on and so forth, ok. So, this is the next point. So, we see that there is

a  lot  of  zigzag in  behavior  which  leads  to  a  very slow convergence  of  the gradient

descent algorithm at some point in time, ok. So, the basic problem is that the gradient

descent algorithm does not utilize the second order information or the information of

Hessian, ok.

So, if we have to, if the function is twice differentiable, then we can use what is called

the  Newton’s  method  to  utilize  the  second  order  information  and  optimize.  So,  the

optimization steps proceed as follows. So, this is an approximation of the function when

you move from x to  x plus delta  x and we wish to minimize  this  quantity  and this

quantity is minimized. If we just differentiate this with respect to delta x, then we see that

the optimal value of delta x turns out to be this. So, this is the as you can see that this is

also a descent direction, ok.
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So, this is the iteration that is followed by the by Newton’s method, that is at any point it

takes step of delta x as computed by the formula shown in the previous method and it

computes the next x and if we keep doing this, we reach the optimum much faster.
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Now, one of the main problems of a generic optimization problem as we discussed is that

we can reach a local optimum, but the local optimum are not always the global optimum,

ok. For example, in this function you can see that there are many local optima here ok,

but the global optima probably somewhere here ok. A global minima is somewhere here

where as this is another minima and there are probably many other minima here, ok. So,

how can we tackle this problem?
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So, we can tackle this problem if we restrict our problems to what are called Convex

Optimization Problem. So, what are convex optimization problem? First we define the

convex functions and the convex sets. So, a convex function is a function of this form.

So,  a  convex  function  is  a  function  of  this  form,  ok.  So,  the  formal  mathematical

definition is that a function f of x is convex if for any two points x and y. So, you take

any two point x and y and you can compute a point on the line joining x and y using this

formula alpha times x plus 1 minus alpha times y. 

So, this is the point in the line joining x and y, where alpha is between 0 and 1 and you

can compute the function value at this point and you can also compute the interpolation.

So,  this  is  the  function  value  at  this  point,  and  you  can  also  compute  the  linear

interpolation of f of x and f of y which is this particular value. So, if we see the points x

and y here, so this is alpha times x plus 1 minus alpha times y and this is the function

value at that point and this is the interpolated value with respect to f fx and fy. So, the

function is convex only if the function value is lower than the interpolated value. In other

words, you have this kind of a shape where this function value as you can see is lower

than the interpolated value.

Another very important notion is that of convex sets. Again if we have two points x and

y and take interpolated point  on the line joining x and y, then the interpolated point



should also belong to a set, ok. If this property is satisfied for all x and y, then the set is

called a convex set. So, a convex sets looks like this, ok.
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.

Now, why do we care about convex functions? So, as it turns out many of the functions

that we optimize in machine learning’s, so for example, in support vector machine or

binary logistic regression are all convex functions, ok. So, they are very important class

of functions in machine learning. So, as you can see this is the lost function for support

vector machine and this is the last function for binary logistic regression.
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So,  what  is  Convex  Optimization  Problem?  A Convex  Optimization  problem  is  a

problem of this form where your objective function is a convex function and the sets or

the feasible sets defined by the constraints are all convex sets.
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Now, if function is convex even if it is not differentiable, we can still define something

similar  to a gradient,  so called sub-gradient,  ok. So, for example,  if you look at  this

function, it is not differentiable, but we can define a sub gradient for this function at this

point by. So, we can define a sub gradient of this function as the set of all g. So, all

vectors g such that f of y. So, this is f of y, is greater than f of x plus g transpose y minus

x. So, f of x plus g transpose y minus x is the interpolation, is the linear interpolation of

this function f of x rather linear extrapolation or approximation of this function from this

point, ok.

So, this is the value and this is the value of f of y. So, for all directions g such that f of y

has to be greater than this linear extrapolation from x based on this g. Such gradients are

called sub-gradients. These are basically directions which lie below the convex function.

So, these are all the directions that come as sub-gradients. So, now why are these sub

gradients important?
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The sub gradients are important because we can actually just replace, so we can have a

very simple algorithm called Sub-gradient Descent Algorithm. So, suppose our goal is to

minimize f of x with respect to x, where x is a convex function,  but not necessarily

differentiable, but if you use this algorithm x t plus 1 is equal to x t plus eta t, where eta t

is a step size and step size is usually a decreasing step size. So, eta t can for example be

taken as 1 by square root of t, ok. So, this is one way to decrease the step size and if this

is the case, then we can still find the optimum of the convex function even though it is

not differentiable.
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Now, finally, we see that we have discussed all these algorithms which are which can

optimize various kinds of objective functions. So, one kind of objective function which

we encounter  a  loss  in  machine  learning  is  the  loss  minimization  function.  So,  the

functions is of this form that you have a loss function which is dependent on the sample

data points. Usually we have a lot  of sample data points and the loss function is the

expectation or the average over the loss at each of this individual sample data points, ok.

So, if the objective function is of this form, then we can use a much faster algorithm than

gradient descent or sub gradient descent. So, this faster algorithm is an online algorithm

which instead of using all the m samples, to note that the objective function depends all

the m data points or all the m samples, however we need not use at each. So, if we use all

the m samples to compute the gradient or the objective function at each step, then it will

be very time consuming. So, instead of using all samples, we can use a few or even one

sample at each iteration and still we will be able to reach the optimum of the total loss

function. So, this algorithm is called Batch Gradient Descent.
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So,  this  is  batch  gradient  descent  or  sub  gradient  descent  algorithm  where  we  are

computing the gradient. So, this is the gradient, total gradient for all or average of total

gradient for all the data points. Then, we are doing the sub gradient descent, but as we

have discussed this is very slow when n is large.
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So, stochastic sub gradient descent is an algorithm which takes only one example at a

time and does a similar kind of iterative updates. So, instead of adding the derivative of

the total loss, what we have done here is, we have just computed the derivative of the

loss calculated using just one data point. So, ith data point and then, we are updating the

parameters which are w is in this case using the standard sub gradient descent algorithm

or gradient descent algorithm that we have described earlier. It can be shown that if L is a

convex loss, then this algorithm also converges to the global optima, ok.
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This is equivalent to learning the weights in online fashion, in the sense that when you

get one example at a time, you can still you can, so instead of getting the entire set of

training data, if you get few training data points, you can still get the optimal model and

you can learn the optimal learning function or the optimal prediction function.
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So, that brings us to the end of this lecture. So, these are some of the references; Practical

Methods of Optimization by Fletcher is a very nice book which describes the derivative

based methods and Convex Optimization by Stephen Boyd and Lieven Vandenberghe is

a book which describes the convex optimization and techniques.

Thank you.


