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 Hello everyone welcome back to the 23rd lecture of Scalable Data, NPTEL course on

Scalable Data Science. Todays lecture is on clustering and this is the second part of that

lecture.  I  am  Professor  Sourangshu  Bhattacharya  from  Computer  Science  and

Engineering at I I T Kharagpur.

(Refer Slide Time: 00:35)

 So, in the last lecture on clustering, we have seen the K means clustering algorithm and

it  is  applications.  And we have  also  seens  seen  the  Lloyds  algorithm or  the  Lloyds

iteration for updating the clusters and it is connection with EM algorithms and also it is

limitations  that is  to say that it  does not give an optimal  clustering.  And in order to

remedy that, we have introduced the K means plus plus algorithm which has optimal

guarantees regarding the clustering objective function.
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So, in this lecture we have going to revisit the K means plus plus algorithm and we are

going to show we are going to state the optimality guarantees and show parts of the proof

for optimality. And then, we are going to see some drawbacks of K means plus plus

algorithm and which are partially at least address by the scalability K means plus plus

algorithm ok.
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So, what is the scalable, so what is the K means plus plus algorithm? As you remember

the  problem  with  K  means  was  that  the  initialization  was  random  and  the  random



initialization did not give any guarantees about the optimality of the final solutionSo, as

we discussed, the best way to attack this problem of sub optimality is to focus on the

initialization problem and K means plus plus is basically an algorithm to initialize the

clustering of K means algorithm from where one can again perform the Lloyds iteration

ok.
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So,  this  is  the K means plus  plus algorithm just  to  recollect  the K means plus plus

algorithm. Basically, the algorithm goes like this that you first choose the cluster centers

c 1 uniformly randomly. So, but then for the next few clusters that is for cluster index i

from 2 to K, you have to choose a total of K clusters, you choose the cluster c i or rather

you sample the cluster c i from the from the set of data points and the probability of

sampling is this d. So, for any point let us say x 0, the probability of sampling this point

is d of x 0 comma C which is the current clustering square by phi x of C. So, if just to

remember, so d of x 0 comma C is nothing but the minimum distance from so minimum

distance.
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So, let me yeah, so d of x 0 comma C is the minimum distance, minimum over all x

belonging to C, x minus x 0. So, this is the minimum distance and phi of x is of course

the clustering objective for the clustering C which is nothing but so, you are phi of x

comma C is some overall x belonging to the set x and d of x comma C whole square ok.

So, this is what is phi of x comma C. 

So, in other words, the points are getting sampled with the probability proportional to

their  contribution towards the K means objective cluster and this is also called the d

square waiting because, actually you would take the square of the distance as the factor

by which you contribute .
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So,  we have also discussed that if instead of taking Dsquare if you take so, you can take

any D to the power alpha waiting. Instead of taking D square if you take these D to the

power 0 waiting, it becomes the original Lloyds algorithm which is the random selection

and if you take alpha equal to infinity, then it becomes the furthest point selection which

we have discussed ok.
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So, D square is kind of the intermediate between these two, so, now, so the main point

here is that, so let me come here, so, this is the main theorem about K means plus plus

ok.So, the theorem says that  suppose you have constructed clustering C using the K

means  plus  plus  algorithm ok  and  then  you compute  the  function  phi  which  is  the

function we have just describe ok. The function phi of course, is a random function it is a

random function because, if you remember every time in K means plus plus algorithm,

you sample from a probability distribution.

So, every run of the algorithm will give you a different initialization for the initial cluster

centers. So, you are expected value of the objective phi with respect to this clustering

which is what we are interested in or this is also the average value you can think is

bounded by this factor 8 log K plus 2 ok times phi OPT .

So, phi OPT is the optimal clustering objective ok. So, phi OPT is the optimal clustering

objective ok and expectation of phi, so, your phi is the clustering objective, given by K

means plus plus and this is a random quantity. So, we are looking at it is expectation and

this is upper bounded by roughly this factor can be thought to be 8 log K ok. So, it is

upper bounded by 8 log K or simply order of log K ok.

It is also sometimes called the competitive ratio, so, sometimes it is said that a k means

plus plus is 8 log k competitive ok. So that means, it can never do  worst that 8 log k



times the optimal objective. Now, k for typical applications you can think is maybe 10 to

50 ok. So, your k is the number of clusters,so, log k is a very small number ok. 

So, you are essentially looking at something like 10 or 20 24 approximation. So, your

objective can be at the very worst 10 or 24 times the optimal objective that you can ever

achieve ok, so that is the guarantee that this initialization is providing. Of course, as you

can understand this is this guarantee is a worst case guarantee, in practice it may be much

better than it may be very close to it may be just one times the clustering objective .
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So, how do we go about proving this? So, the proof takes basically two steps, so, the

proof actually takes three steps, so, the we will not go into the third step, but we will go

into the first two steps. So, the first step is to bound the error the total error of the first

cluster that is chosen ok.
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So, since we are choosing the first cluster uniformly at random what we can say is that,

so let us say we let us take a cluster A in the optimal clustering and let us take a cluster

center a not belonging to A since all a naughts are equally likely, then the optimal or the

expected value of the error function over this set of points A is basically or is basically

this quantity ok. So, given that you have chosen the clustering objective a this is your

loss function because, you have only one cluster centre and that is a naughtSo, this is

your k means objective  function and the chance that  you select  this  a naught as the

cluster  centre  is  1  by  the  size  of  the  set  A.So,  and  when  you  sum  overall  such

possibilities of a naught belonging to A, you get this and now this A bar here is the

centroid of the cluster A which for a single clustering is optimal. So, hence you can see

that this expected error is exactly equal to two times the optimal clustering error on this

cluster A. So, the first cluster that you select, you incurred an error of at most twice the

optimal objective on that cluster.
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Now, the next cluster that you select, again let us say this next cluster that you select is

the cluster BSo, and then from this cluster, so B is the cluster in the optimal clustering

andthen from this cluster you are selected b naught as the point which is the centre of the

cluster  ok.  So, the chance of selecting  b naught is  this  ok,  so,  it  is  because you are

selecting with D square waiting.  So, the chance of selecting b naught is  basically  D

square b naught by summation over all you know B all points b in B D square b ok and

the cost that you incur is the minimum of these two numbers. So, either you are for every

point let us say b, you it is either closest to this newly selected cluster b naught or it is

closest to the existing point D of b ok.

So, that the cost is minimum of these two, more over from triangle in equality, we can

say that this D of b naught is less than or equal to D of b plus the distance between b and

b naught ok. So, whichever is the closest cluster? So, you can say that you can say that

this holds ok.



(Refer Slide Time: 14:41)

So, furthermore you can just by expanding that you can see that actually this D square b

naught is less than or equal to 2 times D square b plus 2 times b minus b not ok. So, this

also holds ok and then you want to eliminate b, so, you take average overall B ok and

you get that D square b naught is less than this particular quantity. So, this is just you

would divide by the size of B and then sum over all elements in B ok.
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So, now given that you see that we had this recall that we had this , so recall that we had

this equation in terms of expectation of phi B ok. So, now if you plug in this inequality in



this D square b naught ok and in so, you get basically you get two terms, one is this term

and another is this term ok. So, for the first term you for this minimum you just plug in

as an upper bound this one, so, this minimum quantity is less than both size of b minus b

naught square, so mode of norm of b minus b naught square and D of b .

So, for the first term, you plug in b minus b naught square and for the second term, you

plug in D of b square, so, D of b square cancels in both cases and then in both cases the

upper bound you are left with is b minus b naught square. And so, this is an upper bound

over this and when you sum over this it become, so you can see that this b naught is just

the centroid and hence this is nothing but 8 times the optimal clustering of b naught ok. 
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So, what do we have so, in summary, we have that if the clusters are well separated, we

can always pick a centre from a new optimal cluster and the algorithm means basically 8

competitive.

So, the intuition here is if no point from cluster is speaked, then it probably does not

contribute much to the overall error ok. So, we will not we will not go into the proof as

such, but using these two and the following theorems.
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So, if you believe the following theorem to be true and the results this can be proved

using the result that we have just shown, then you can get the optimal result. So, what

does this theorem say? This theorem says that basically if you start with a cluster in C

and then you choose you many you many uncovered clusters from the optimal clustering

and let X u denote the set of points in this uncovered clusters and X c denote the set of

points in the rest of the clusters ok.

And also now suppose you add t which is at most equal to u ok, that many points to the

set of to the to the to the set of cluster centers ok. So, you add t many points to the setup

cluster centers and then you get this new clustering C dashed ok. So, from the starting

clustering C, you add t many clusters centers and get the new clustering C dashed, then

and for this new clustering you get this objective phi dashed. 

So, if this is the case, then the expected value of phi dashed is less than the cost that

incurred on the cover clusters plus we have seen this already the 8 times the cost the 8

times the cost that you incurred on the uncovered clusters times this factor ok. This factor

is nothing but you can think of is as a order log k factor actually order log k plus 2 factor.

So, this is order log k plus 2 or rather log t plus 2 and then, plus some term u minus t by

u plus phi of u. So, the cost that you incur on the other clusters, but the k term here is u

minus t, so, if you add exactly u many so if u is equal to t ok. So, t can be at most u, but

if it is exactly equal to u which is the case in our proof ok, then this cost is just 0. So, this



cost is 0, so, this term dominates the cost and this term is basically the cost that you

incurred on the covered cluster plus 8 times the optimal cost that you incurred on the

uncovered clusters and to go back to the result from here, all you have to do is you have

to plug in.
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So, just to recall this result, all you have to do is you have to plug in u is equal to k minus

1 ok.So, the initial there is an initial covered cluster C which is the initial cluster and you

have to add u is equal to k minus 1 and t is equal to k minus 1 and then you get this result

from that result ok. So, hence we have shown and sort of given an integer as to y the new

clustering is optimal.
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So, now this new clustering algorithm, so this K means clustering algorithm this has

certain drawbacks ok. So, the first drawback is that it needs K passes over the data, this

is because, in every pass you select a new cluster centre ok. So, in every pass you select a

new cluster centre. So, you have to basically make K plus passes over the data and every

time sample one point one cluster centre as your point, but, so, basically for many large

applications, so let us say your K can be even 1000 or at least it can be of the order of

100. So, you may be looking for 100’s of clusters so, that many a times does not scale.

So, 100 passes over the data is not possible to make.
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Now, so,but  what  is  the solution?  So,  the solution,  so or  rather  the intuition  for  the

solution is that note that K means plus plus is doing a sampling so, it is a randomize

algorithm right.So, it is doing a sampling of the clusters, but why does it do not only that

it is doing a sequential sampling. So, it is sampling the cluster centers one after the other

ok. So, why does it do a sequential sampling or why does it sample one point after the

other? The reason is that every time it is samples a point, the distribution from which it

sample change it sample changes. The reason this distribution from which it samples

changes is because, if you see the sampling probability depends on D square of x naught

comma C ok. Now, this D square of x naught comma C it changes as your clustering

changes.

So, the question is does it change a lot ok so, if it does not change a lot, can we do the

following can we in over sample from the D square itself. So, instead of recalculating the

clustering, let us say we sample let us say instead of one cluster center every time we

sample 4 or 5 cluster centers every time. So, intuitively you are updating the distribution

much less frequencely frequently or other. So, these are two equivalent we have thinking

about it that you are selecting more sample more clusters centers per clusters in K means

plus plus you are selecting one cluster centre per cluster, here your selecting more than

one cluster centers per cluster, the equivalent way of thinking about it is that you are

doing the sampling from a coarser distribution ok..

So, yeah, so without or rather without updating the distribution too much,so, it can be

showns or it was shown in a recent paper called Scalable K means plus plus or K means

parallel by Bahmani and et al, so that, so this particular algorithm actually achieves the

same guarantees as the K means plus plus algorithm ok.
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 So, what is the algorithm ok? So, the algorithm is the following, .so, you choose a over

sampling factor l you can think like l is theta k ok.So, every time you sample theta k

points from the distribution instead of just one point ok. So, after this, you initialize C 2

an arbitrary set of cluster setup points and then for R iterations you run sampling from

this distribution. So, instead of your you sample x independently with probability l d

square by phi of x. So, earlier you were sampling with D square x c by phi of x c now

you are sampling with l times this probability, so, you are basically over sampling by a

factor of l .

Now, what will happen is at the end of it, you will get you are not guaranteed to so, you

are not guaranteed to get k points. So, in k means plus plus, you are guaranteed to get k

points a cluster centers because, you are selecting the first one randomly and then every

iteration you are selecting one for k minus 1 iterations, but here you will at the end of all

this you will get l times R points. So, if you have done R iterations, you will get roughly

l times R points.

Now, you have to ensure that this l times R is greater than or equal to k and then once

you have sampled is l times R points greater than equal to k, you just re cluster the

weighted points in C that is l times R points using let us say something like a K means

plus plus algorithm to find the final k clusters.



But this time, you are only going to have to make a pass over this l times R set of points

rather than the full data set .So, this is much more efficient so, this is the algorithm ok.
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So, just to describe what the algorithm is so, let us say this is your clustering. So, you

first select, so you first select let us say this particular point ok, so, you select you select

first this point and then let us say you have over sampling factor which was described as

L as  3  and  then  you  sample  from D square  distribution.  So,  D  square  is  basically

measuring the distance from this cluster centre and points which are far away are highly

likely to get selected and you select three of them. So, let us say one you select here and

two, you select here and you do not select a sample anyone here because all the points in

this cluster are very close to this.
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So, next time, you again sample 3 ok. So, now, you get one here, one here and here and

then you cluster the intermediate points ok. So, you cluster these intermediate points and

then you get one point in this cluster, one point in this cluster and one point in every

cluster like this. So, this the intuition behind the scalable K means plus plus algorithm

.Now, what kind of so we have already seen this.
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 So,  this  is  one  way  of  thinking  about  scalable  K  means  plus  plus.  So,  it  is  a

generalization of K means plus plus algorithm,in the sense that if you set R is equal to k



and l is equal to 1, you get the K means plus plus back .Now, normally what you want to

do is you want to if you get R is equal to 0 and you select l is equal to k and you select l

is equal to k, you get the original K means algorithm back because, you are selecting

everything uniformly randomly. What you want is you want a small R ok, so, you want

to select the small R and you want to select some l over sampling factor and then you

want to give some guarantee ok.
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 So, how do you want to do this ok? So, this is the main theorem that of the paper, so,

what it says is that suppose you start with the let us say you start with a clustering C ok.

So, you start with the clustering C and then after sampling new cluster centers, you go to

a clustering C dashed and let their costs be phi and phi dashed.

Then  and  suppose  you  yeah,  so  then  and  suppose  OPT is  the  cost  of  the  optimal

clustering, then of course, you are your phi dashed is going to be random ok. So, you

take the expected value of phi dash, so, the expected value of phi dashed is less than is

going to be less than or equal to the cost of the optimal clustering plus this k times l

which is a constant. So, k times l if your l is theta k, then k times l is just a constant and

E is a constant so, it is k times l times phi ok. 

So, if you run this algorithm for R iterations ok, you reduce the cost by a factor of k

times e to the power l to the power R ok.So, if let us say a psi was your initial cost of

clustering and OPT is your final cost ok. So, in order to reduce the cost of a clustering



initial clustering psi to OPT, so this is your ratio of reduction, so this is the factor by

which you should reduce. So, every time the cost is getting reduced by this factor k times

a k by e to the power l times R .So, you just have to run the iterations log O log of psi by

OPT iterations ok.

So, that is, whatever is the ratio of the initial cost to the cost of the optimal solution ok,

you have to run it log of that many times iterations ok. So, if you run it that many times

you  get  a  cost  which  is  close  to  optimal  which  is  order  optimal  cost.  So,  this  the

guarantee given by the a Scalable K means plus plus algorithm.
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So, some experimental results, so first they compare this random initialization which is

the K means algorithm K means plus plus and K means parallel and basically what they

show is  that  both  if  you measure  cost  just  after  initialization.  So,  this  these  are  all

initialization algorithms so, you can either try to measure the cost just after initialization

or  you  can  try  to  measure  the  cost  you  can  run  the  Lloyds  iterations  after  the

initialization.  And  in  both  cases  actually  K  means  plus  plus  does  much  better  than

random and this K means parallel does slightly better than K means plus plus in terms of

the cost itself.

So,  the quality of the solution itself  improves with this  K means parallel  and this  is

because basically  you can think of it  as also running many K means plus plus is  in



parallel because, you are doing a lot of sampling and then you are doing clustering for

each of the samples.

(Refer Slide Time: 36:40)

The second important result is that if you look at the number of iterations that number of

Lloyds iteration that are taken till convergence. So, again the number of Lloyds iterations

taken after the K means parallel initialization is the lowest followed by K means plus

plus and of course, random initialization takes a lot of Lloyds iteration for convergence .

So, that concludes our x position on clustering and scalable clustering, so, it is easy to

see that both K means plus plus and scalable rather both, so, both K means plus plus

scalable K means plus plus are very accurate algorithms furthermore, K means plus plus

is actually implementable in parallel and it requires much less number serial iterations

ok.
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So, these are the references, so, the k means plus plus is was published by Arthur David

Arthur  and  Sergei  Vassilvitskii  and  scalable  k  means  plus  plus  was  by  the  authors

Bahman  Bahmani,  Benjamin  Moseley,  Andrea  Vattani,  Ravi  Kumar  and  Sergei

Vassilvitskii and these are the reference.

Thank you. 


