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 Hello  everyone,  welcome  to  the  23rd  lecture  of  NPTEL course  on  Scalable  Data

Science.  I  am  Professor  Sourangshu  Bhattacharya  from  Computer  Science  and

Engineering at IIT Kharagpur. And today we are going to discuss about Clustering ok.
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So, in this lecture we are going to discuss about k-means clustering and it is application.

So, we are going to talk about the general problem of clustering and then we are going to

talk  about  the  k-means  clustering.  And  then  we  are  going  to  discuss  the  Lloyd’s

algorithm which is also sometimes called the k-means algorithm or k-means clustering

algorithm, which is also same as the EM algorithm. We will also discuss a little bit not

much. And then we will discuss; what are the limitations of this Lloyd’s algorithm.

And then we will discuss recent work which is the; actually so it is 2007 watt, which is

the  k-means  plus  plus,  which  takes  care  of  some  of  the  limitations  of  the  Lloyd’s

algorithm. And then finally, we will see an algorithm which is called as scalable k-means

plus plus, which takes care of the some of the limitations of k-means plus plus which is

to they say that it makes them more scalable ok. 
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So, as we know clustering is basically an instance of unsupervised learning problem. So,

that is when your data does not have labels ok. So, it can be used for detecting patterns

like in image; so for example, in this particular representation you can see that: so in this

representation clustering is  being used to segment the images.  That is the image has

various portions, like the water body, the road, or the sand and then it has the grass and it

has sky so, and it also has clouds. So, we are using a clustering algorithm to segment out

this portions of the image.

Other pattern detection could for example, include problems regarding shopping results

or so it you could try to segment the customers into different groups. And also maybe

anomalies, like you could try to say try to group the different types of fault patterns in a

particular transaction or in a particular machine using clustering. And then from that you

can try to derive some inside. 

So, it can be also use for optimizing for example, you could be used for distributing data

across machines, it could be use for cleaning of search results, it could be use for facility

allocation  for city  planning.  So, in  general  it  can be used for  removing outliers  and

abnormal data points. So, and more generally unsupervised learning is very useful for

exploratory data analysis, which is to say that you initially do not know what to do and

then you are doing some data analysis. 



So, for example, in this figure you can see that so this is some gene microarray data

which has been clustered using dendrogram. And then you can see it finds groups of

similar clusters. So, this is one group this is another group and so on and so forth. And

maybe one can create a phylogenetic tree out of such clustering ok.
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So, what is the basic idea? The basic idea is that you have to group the objects that you

want to cluster into a small number of basic groups ok. So, the main aspects here are

what are the groups. So for example, how do you define similarity and distance between

object? So this is first important thing. So, for example, so this is basically this figure

illustrates the fundamental limitation of a clustering. So, you could try to cluster it using

the first clustering which is this or you could try to cluster it using the second clustering

which is this. And it is not clear which of them is the base so this is the basic problem of

unsupervised learning that it is an impose problem ok. So, in order to make it  concrete

we have to define certain things. So, first of all you have to define a similarity measure

or a distance between objects and then which will basically define what you mean by

meaningful similarity. And then you may have to tell how many groups and so on and so

forth ok.
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So, essentially, so the first thing is to develop an object representation ok. So, how do

you develop an object representation? So, you can either depending on the situation you

can represent the objects using vectors which is the most common case and which is also

the case we will be looking at. But you could also represent the object using a set that is

one way. For example, in case of images maybe you want to look at the objects as sets or

you may want to look at the objects are sequences which is the case when let say you are

trying to clusters streams or something like that or DNA sequences for example.

And the second thing that you have to decide is the interaction representation ok. So,

basically you could either take all pairs of interactions which is the case in many cases or

you could take the interactions on a network which is sometimes called clustering on

network and so on and so forth.
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Now, once you have defined these two; so once you have defined the object and the

interaction. Then you need to come up with the distance function which is probably the

most  important  thing.  So, the distance function could for example,  be the L p norm

between  vectors  or  Jaccard  distance  for  sets  or  edit  distance  for  sequences  and  or

divergences for probability distributions. So, these are all standard distance functions. So

for this lecture we will mostly with dealing with the vectors and we will look at L p or

rather more precisely L 2 distance which is also called a Euclidean distance, but all the

other measures are possible ok.

So,  typically  distances  will  have  these  three  properties  metric  property;  that  is  the

distance should be positive, it should be symmetry, and it should obey what is called the

triangle  inequality which is that the distance between x and z will always have to be

smaller than the sum of the distance between x and y, which is the third point and y and z

ok. So, these are some of the properties under which our analysis we will define our

algorithms  and  we  will  analyze  them.  The  second  interesting  proper  or  important

property is that we should be able to calculate an average of the data points. 

 For example, which minimizes; so for example, you could if you have data points P i ok,

you could try to calculate the average. So, this is the average or sometimes also called

centroid of these data points P i ok. Such that the x which minimizes the distance the or

the sum over the distance from all such data points p i to x ok. So, in other words if you



have a lot of such points, maybe your x should be somewhere here which minimizes all

these pair wise distances or sum of all these pair wise distances ok. So, we should have a

representation of x so this is another property which we will need ok.

(Refer Slide Time: 10:45)

So, these are some of the formulas for the distances, most importantly we will be using

the L 2 distance; which is the Euclidean distance and so one can also use L 1 distance

and L infinity distance. And we can easily calculate the averages so, for example, in this

case it is just the centroid. So, your basically x is going to be just 1 by the number of

points, and then sum over i is equal to 1 to N P i so this is the formula for the centroid.

So, in case of vectors and when the distance is L 2 distance it is very easy to calculate the

centroid. Another related distance is the cosine distance. 
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Now so one can use so, now, this objective function can be specified in many ways. So,

for example, one way is to specify the number of clusters ok. So, if you have k clusters

then you can you have a well defined objective function which you want to minimize for

obtaining a good clustering we will see how. So, this so basically the k-means clustering

algorithm which we will discuss is comes in this category.

Other than that sometimes you want to specify the cluster separation or cluster quality

index ok. Something like the maybe a  threshold on the radius of the cluster or maybe

something like Dunn’s index and things like that ok. So, this is another way of doing

clustering for example threshold based clustering is one example. Yet other times you

may want to specify some graph based measure ok. 

So, these are sometimes called Spectral clustering techniques where you basically define

a graph over all the data points and then you try to minimize a graph based metric over

this set of data points. And finally, you may not want to specify any matrix; for example,

in  case  of  hierarchical  clustering  you just  try  to  create  hierarchies  and try  to  create

clustering at different levels which is also called the dendrogram. So, arguably the first

one  is  the  most  widely  used  a  clustering  technique  and  in  this  lecture  we  will  be

discussing the first one which is the k-means clustering ok. 
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So,  what  is  k-means  clustering?  So,  K-means.  So,  as  we have  already  discussed  so

basically the distance function in case of k-means clustering is typically L 2 distance

which we have already design and describe which is also the Euclidean distance. And

now we also specify a k; a value of k which is the number of cluster. Now, once we are

specified all this, we need to find a set of cluster centers c which is c 1 till c k.

So, we need to find k cluster centers, one for each of these clusters such that the so, given

all the data points x sum over all the data points the minimum over c x distance from x to

c x whole square is minimized. So, what this minimum over c x does, is it calculates the

distance of x from it is nearest cluster center. So, it basically calculates the distance of x

from it is nearest cluster center ok. And the total such distance should be minimized ok.

So, this is the k-means clustering formulation ok. So and the problem is that you have to

find this set c.

So, you are not given this cluster center you are only given the value of k and you have

to finds c 1 till c k. That needs to the minimization of the above cost and this leads to a

natural partitioning of the data. So, this algorithm has a large amount of work both from

theory  and data  mining community  and basically  it  is  also  used  very  extensively  in

practice. 
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Another way of looking at the same problem is that the best k clustering of data can be

obtained by minimizing the radius of each cluster ok. So, in other words another way of

putting the same thing is once you specify a cluster center. So, once you specify a cluster

center, you can find all the points that belong to this cluster those are precisely the points

which are closer to this cluster center than any other cluster center which is there ok.

And now the problem of k-means is if you try to draw a circle something like this where

all the points belonging to this cluster center will fall within the circle. Then the problem

of k-means clustering is trying to minimize the radius of this circle. Again so we have

already discussed this that once you know the clustering it is very easy to calculate the

cluster center which is given by this formula and vice versa.

So, once you know the cluster center it is very easy to calculate the clustering that is

which cluster which points belong to which cluster ok. So, so this minimizing radius can

also be thought of as minimizing the variance, which is minimizing this quantity for each

cluster center ok. So, we will see how this works out. So, now, we describe the Lloyd’s

algorithm which is the algorithm for k-means clustering ok.
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So, what is the Lloyd’s algorithm it is an iterative algorithm it is a very simple algorithm

ok. It says you initially randomly select the cluster centers ok. So, given some set of

points you can randomly select some of the given points as cluster centers or you could

choose randomly any other points as cluster centers ok. And then you do these two steps

iteratively ok. So, you assign each point to or rather let me put it this way instead of

saying these two steps you should do these two steps iteratively ok.

So, once you have the cluster centers you assign the points to the nearest cluster centers.

In other words you actually calculate the clustering ok. So, you calculate which points

belong to which clusters and once you have done this you recalculate the cluster centers

which is the centroid calculation ok. So, you do the centroid calculation again and then

you keep repeating these steps again and again. So, these recalculating the recalculating

the centers gives you the current centers of the partitions and then you again repartition

using now the current centers. 
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And so, this is an iterative algorithm so when do you stop this iteration. So, one time that

you can stop this iteration is when no points change their clusters ok. So, every time the

points, the clustering remains the same. So, every time the points are assigned to the

same cluster or another way of stopping could be that you maintain the cluster centers

from the previous cluster and then you see how much this cluster centers are shifting and

if they do not shift much. Then you can stop the algorithm so both of these are equivalent

ok.
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So, this is a run through of the algorithm. So, you first initialize and in this case we are

showing all the data points and we have K is equal to 3 ok. So, we have K equal to 3. So,

these are the three initialize clusters cluster centers rather. 

(Refer Slide Time: 21:57)

Now, next is for every other point you assign it to the nearest clusters. So, basically this

point gets assigned to this cluster, this point gets assigned to this cluster and all the other

points gets assigned to the blue cluster.
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.



And now you recompute the cluster center so, if you see now so earlier you had assigned

this point to this point. Now because both of these points are in this cluster your new

cluster center is this green point which is the centroid of these 2 points. Similarly your

new cluster center for this cluster the red cluster is this point which is the centroid of

these 2 points. And then the new cluster center for the blue cluster is this point which is

the centroid of all these 5 points. And then you keep repeating this. 
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So,  you keep repeating  it  and then  it  converges  to  a  particular  clustering  ok.  So,  it

converges so you can see that as you keep repeating things, it converges to a particular

clustering.
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So, you see up till now this point was belonging to this cluster, but now it gets reassign to

this cluster because it is closer to this cluster center and then you get the final clustering

ok. So, the analysis of this algorithm so basically suppose you have k centers, N points



and d dimensions Then you can see that time taken to compute new cluster assignments

is O k N d.

Because d is the time taken to compute the distance between any 2 points, N d is the time

taken to compute the distance of all the points from k many cluster centers. So, for each

cluster center and each point you have to compute the distance from each cluster center

and then assign it to the closest cluster center. And then of course, o n d is the time taken

to recompute the new centers. And so, the question comes how many iterations do you

need to run? 
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And so we have seen that this is the objective function for k-means clustering. So, so,

another point is that you can see that this cost decreases at every step ok. This is because.

So, if you see if you consider the. So, so for any point when it gets assigned to it is

nearest point so, the d x comma c x becomes minimum for that point. So, reassignment

to the nearest point minimizes this for every point ok.

And hence after every iteration and similarly when you recompute the cluster center ok.

So, for the nearest point the so, for the nearest point basically the or for any given cluster

the distance of the centroid is or the centroid is by definition is the point which is at a

minimum distance from all the points in that cluster. 



Hence this sum over distances is also minimized when you recompute the cluster centers.

So, both steps actually reduced the value of this total objective function, which is the

sum total of cost of each cluster. So, one way of thinking about it is a sum total of cost of

each cluster, another way of thinking about it is that it is sum total of cost of each point

or the distance of each point to it is closest neighbor ok. 
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So, since the objective function reduces in every iteration. So, this algorithm is basically

guaranteed to converge and there are some analysis which shows that in the worst case it

may take exponential number of steps, but typically you do not see so many steps. So,

typically you see whenever you run the k-means clustering it converges within a finite

number of steps ok. So, what is the problem? Ok. So, the problem is this that so, the

problem is where do the cluster centers like after it has converged.

So, for example, this here I am showing one example output from a k-means clustering

so you can see that actually here that 2 clusters are more well separated and here the 2

clusters are merged, but still  the final solution here is that there are 2 cluster centers

green and purple here and the corresponding clustered points are shown in the color.

Whereas, there is only one blue cluster center here so this kind of solution is possible ok.
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So this figure actually gives you an idea a bigger idea of why this kind of solution is

possible.  So,  before going into this  figure let  me describe.  Let  me tell  you that  this

Lloyd’s algorithm can be thought  of as a  generalization  of the EM algorithm or the

expectation maximization algorithm for estimating the mixture of Gaussians distribution

ok. So, that also gives a kind of proof that that the algorithm will always converge, but

both this so the EM algorithm is well known to be stuck in the local minima.

So, the expectation maximization algorithm is a supposed to maximize the log likelihood

log likelihood function of this distribution ok. And it is known that the EM algorithm

gets stuck in a local optima ok. So, let us see how it can get stuck in the local optima. So,

this is one example that illustrates that so suppose you randomly choose suppose this is

your data set and you randomly choose this point as the initial blue cluster centers, this

point as the initial red cluster center and this point as the initial green cluster center ok. 

So, so when you reassign the points these two points will become green ok. So, this will

be the green cluster this will be the red cluster and this will be the blue cluster where as if

you choose this to be the green cluster center this to be the red cluster center and this to

be the blue cluster center 
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Then this will be the green cluster, this will be the red cluster, and this will be the blue

cluster ok. Now as the iterations progresses the cluster center won’t change because this

is in the middle of these two and similarly this is in the middle of these two. So, in both

cases the cluster center will not change and both are 3 clustering’s ok, but both are for k

is equal to 3. But you can see that the first clustering has a much more distance between

the points that are assigned to cluster then the second clustering.

So, here the distances at just this plus this whereas, here the distances at this plus this ok.

So, and both of them are optimum ok. So, depending on the initialization you can arrive

at either of these solutions ok. So, basically this is an this is an example of how the

solution can come. Now, note that you can actually make this arbitrarily worse. So, it is

one may ask that maybe it is a problem, but it is not too bad, but that is not the case

because you can make this clusters as far apart from each other as you want ok.

So, you can make these points very far apart in this direction and still the logic that I give

will work ok. So, not only is it and local optimum it is actually arbitrarily worse than the

best solution or the global optimum ok. So, in order to solve these problems in 2007

Sergei Vassilvitskii and David  Arthur  they came up with an algorithm called k-means

plus plus. 
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So, the algorithm so, the line of attack is something like this that you. So, so clearly the

initialization is the problem in case of k-means clustering ok. So, if you are starting with

a bad initialization then there is no way you can get to a good solution ok. So, maybe we

should focus on the initial center position and the classical k-means solution is that pick

k points at random. 
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So, what the k-means plus plus proposes. So, so for simplicity we will take Gaussians

clusters which are spherical clusters, but this will work the logical actually work for any

cluster as we shall prove so. 
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So, one  may select for example,  like we mentioned the blue cluster center here, as a

green cluster center here and a red here and a purple here and then it would always give

sub optimal clustering ok. 
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But instead if we select a cluster centers using the furthest algorithm. So, what is the

furthest algorithm? That is you first select 1 cluster center arbitrarily randomly ok.
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So, let us say this is your first cluster center. Then you select the next one as the point

which is furthest away from the current cluster center ok. 

(Refer Slide Time: 35:55)

And then  you select  the  third  point  which  is  furthest  away  from all  whose  sum of

distances  is  furthest  away from the first  two points,  that  you have selected which is

somewhere here ok. 
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And finally, you select the forth point which is furthest away from the all the three points

you have selected. Then you have a good starting selection of cluster centers. So, this

actually gives a two approximation, which is to say that if phi star is your optimal cost

for the k-means clustering ok. 

Then you can be sure that the cost that you get here phi is less than or equal to twice the

phi star. So, you cannot do arbitrarily worse than the optimal clustering. You can you will

always be less than twice the cost of the optimal clustering. But this also has a problem. 
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The problem is this suppose you have an outlier like this a single data point which is very

very far away from all other data points so this outlier can cause the problems. So, in this

case actually there are only three clusters and suppose you want to select three clusters.
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So, then the outlier so the points that you select may be something like this ok.
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And then your clusters will become something like this ok. So, this is not the  correct

clustering because this is just an outlier point ok.
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So, the idea behind k-means plus is that basically all the selection methods of points are

somehow using this D of x; that is to say that the it is choosing the point x according to it

is distance from existing center. So, if it is further away from existing centers then it is

selected more ok. So, now, so you can think that instead of selecting so one can select

proportionally to D of x to the power alpha.



Now if alpha is equal to 0; that means, D of x to the power alpha is always 1 that gives

us the random initialization or the original Lloyd’s algorithm ok. If alpha is equal to

infinity ok, then you always select the furthest one this give the furthest point algorithm

ok. So, what k-means plus plus does is it selects the points according to alpha is equal to

2. That is it selects the points according to D x square ok.
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So, if you select like this there is a so we will come to the algorithm.
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So, let us go to the algorithm so the algorithm is the following that you first select a

point. So, once you have selected set C. So, given a set C you select a new point x from

the distribution D square x comma c by sum over D square x comma c so sum over x ok.

So, that is you select the point which is having the. So, here D x c is nothing, but sum

over all c x in c distance between x and c x ok. So, so, you basically select or rather

sample points from this distribution which selects points which are furthest away from

the points you have already selected ok. So, this is an example of how the algorithm

operates ok. So, initially you select this green point, blue point, and red point.
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And then you calculate you run the k-means iterations and you get cluster like this. So,

this gets assigned to this cluster and this has a theta log k approximation guarantee over

the actual k-means plus plus.

So, we will stop here. And in the next part of this lecture we will see why k-means plus

plus is better than all the existing algorithms. And we will also see why it is not scalable

and how to scale k-means plus plus through large data scale. 

Thank you. 


