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Hello everyone, welcome to the 22nd lecture, second part of 22nd lecture on NPTEL

course on scalable  data science.  I am Prof. Sourangshu Bhattacharya from Computer

Science  and  Engineering  at  IIT,  Kharagpur.  And  today’s  lecture  is  going  to  be  a

continuation about the alternating direction method of multipliers or ADMM. So, we in

the first part of this lecture, we had looked at the distributed optimization problem and

we had looked at  how we can pose  this  as  an equality  constraint  problem or  rather

equality constrained optimization problem. 
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And then we had gone into the precursors of ADMM or the method that is led to ADMM

which are basically methods of solving equality constrained optimization problem. So,

we have seen the dual ascent method, and we have seen that the dual ascent method has a

problem of a problem if the Lagrangian is not strictly convex that is if it does not have a

unique optimum then the solution can oscillate.

To solve that problem there is the method of multipliers method which basically uses

augmented Lagrangian instead of regular Lagrangian which basically is always strictly



convex. And then finally we have seen that this has a decomposition problem because we

use  the  augmented  Lagrangian.  So,  the  method  the  objective  does  not  directly

decomposed which leads to the method of ADMM.
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So,  just  to  recall  the ADMM, this  is  the problem formulation.  So,  we are using the

simplified problem formulation where you have just for simplicity sum of two functions

f and g. And these are these are optimized with respect to x and z subject to this kind of

an equality constraint.

So, here we use a general equality constraint. We will see in a minute for the specific

constraint  where  x  is  equal  to  z  which  corresponds  to  the  distributed  optimization

problem ok. And then we have already defined the augmented Lagrangian like this. And

we see that because of this term this squared term this actually does not decompose into

the form some let us say f 1 of x plus f 2 of z. 

So, this is what we would ideally want but it does not happen. But none the less we are

we are so the ADMM method can circumvent this by using these three steps. So, in the

first steps actually here the problems are actually decomposing. So, in the first step, you

only minimize with respect to x keeping the z and the y same for the previous iterate;

then you minimize with respect to z, and then finally, you minimize with respect to y ok.



And if you do this, then as you can understand you can do the first one in a different

machine, the second one in a different machine and then finally, maybe the third one in a

centralized  machine,  so  that  is  our  strategy  for  distributed  optimization.  Now,  the

question is so how did we arrive at this ok.
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So,  basically  we  see  that  the;  so  we  have  seen  that  since  we  split  the  joint  x,  z

minimization problem, now the solution can be decomposed ok.
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So,  earlier  if  we  were  not  using  ADMM,  the  first  step  of  our  solution  would  be

something like we would have to combine these two steps into saying that x k plus 1

comma z k plus 1 is equal to arg max over jointly x and z and then we would have to say

something  like  L rho  of  x  comma  z  comma y  k.  So,  this  would  be  the  method  of

multipliers solution ok, instead we can now split it in the ADMM step ok.
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So, now why does this  basically  work? So, so first  some of the some of the simple

things, so for this problem to have an or rather for the given solution to be optimal that is

optimality conditions ok. So, there are three optimality conditions now, because there are

three variables.

So, one is the primal feasibility which is basically corresponding to gradient of L rho L

rho with respect to so will with respect to the dual variable which is in our case y ok. So,

x, z, y this should be equal to 0. So, this is the primal feasibility condition which also

boils down to saying that your constant should be satisfied.

Then there are two dual feasibility conditions ok. One when we differentiate with respect

to each of the primal variables, so when we differentiate with respect to x L rho of x, z

and y is equal to 0 and once when we differentiate with respect to z. So, these are the

three optimality conditions.



Now, as we have seen earlier since z, k minimizes this quantity if we set the gradient of

so if we set the gradient with respect to z and we put x k plus 1 and y k equal to 0, we get

this condition. So, this is equal to 0. And now if we just substitute back the update for the

y if you recall the update for the y k plus 1 is nothing but your y k and then plus rho

times a x k plus 1 plus b z k plus 1 minus c ok.

So, if you recall, this is your update for the y k plus 1 ok. And now you can see that it

automatically satisfies the one of the dual feasibility conditions, which is this one ok. So,

your z k plus 1 automatically satisfies the second dual feasibility condition. This we saw

in case of method of multipliers also just by virtue of using rho as the step size ok.

So, basically we are left with these two unsatisfied dual feasibility conditions or not dual

feasibility, but these two unsatisfied conditions. So, this should be 0, and this should be

0. If these two conditions are satisfied, then we can say that we have already reached the

optimal. 
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So,  these  conditions  are  satisfied  asymptotically. So,  what  do  we mean  by that?  So

basically in order to monitor the satisfaction of these conditions, now, we define the two

residuals. The first one is the primal residual, which is basically trying to monitor the

convergence of the rather the satisfaction of the primal feasibility condition, which is the

derivative with respect to the dual variable should be 0 ok.



And that is simply this value A x, we know that at optimality A x k plus B z k minus c

should be 0. And if we take r k to be just this quantity, actually we should take it to be

just norm of this quantity ok, then it should be 0. So, if a vector is 0, its norm should also

be 0 ok. And the second thing is basically the, we have to monitor the other condition,

which is this one ok.

So, this is the first dual feasibility condition that we get that is gradient of f x k plus 1

plus A transpose y k plus 1 should be equal to 0 ok. And we see that so if we just now

impose the condition that x k plus 1 minimizes this quantity ok. And if we take the

gradient and equate it to 0, because x k plus 1 minimizes this. So we get that this should

be equal to 0. And just like rearranging previously ok. So, if we do the rearrangement, so

we get that gradient of f x k plus 1 plus A transpose y k plus rho transpose this whole

quantity is equal to 0. 

Now, we put this  term we couple this  with the second term.  So, we couple the two

together. And then we apply the same update here and we see that this is basically the y k

plus 1 update ok. So, so we can see that your y k plus 1 update is basically your y k plus

rho into yeah, so this is yeah so this is your primal residual which is r k plus 1 ok. If you

recall, this is this is the update, and so this becomes y k plus 1 ok.

And now this quantity is the quantity that you want to monitor ok. So, this is nothing but

just negative of this, so this quantity is nothing but the negative of this quantity. So,

basically monitoring this; sorry monitoring this second primal residual boils down to just

monitoring, the difference between z and z k ok. We will see this mode, but essentially

what this tells us is that now this quantity rho into A transpose B, A and B are all given.

And z k is the z variable value in the kth time point and z k plus 1 is the z variable value

in the k plus 1th time point.

So, this is the new z, then this is the old z. And if you take the difference between the

new z and the old z, and then multiply by this constant, this constant is just known ok.

So, if this is if this z minus z k, so if this is 0 ok. If this goes to 0, then this product will

also go to 0. So, basically the other residual monitoring the other residual is equivalent to

monitoring that the between two successive iterations the z variable, which is the second

primal variable converges and does not basically change ok. So, this can be thought of as

the dual residual ok.
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So, now so we will state now the theorem of convergence of ADMM ok. So, we have

already shown the iterates. Now, suppose the function f is f and g are two functions ok,

and  these  are  closed  proper  and  convex.  So,  many  of  the  machine  learning  a  loss

functions are of this type ok.

If  this  is  the case,  and the second condition is  that  the augmented  Lagrangian has a

saddle point that is you have the optimal solution x star, z star, and y star. And you have

the, you have the dual problem, which is which is lower than which is basically and

upper  bound.  So,  basically  if  this  so this  is  the convex direction,  so and this  is  the

concave direction. 

So, if there are two directions ok, and in one direction at this point x star, z star, so this is

the optimal point x star z star, and then y star ok. If you go in the x, z direction ok, you

always you always go higher. So, if your x is, if you move from x star and z star that is

you move on this axis you always go higher. And if you move in the y axis, you always

go lower. So, this is basically in some sense the dual problem.

And this is the primal problem for some given so the primal problem for some given dual

variable value, and is the dual problem for some give given primal variable value. If this

condition holds and this condition holds for all convex optimization problems; if this is

the case, then your algorithm ADMM algorithm is guaranteed to converge that is that is

the basically the k ok.
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So, now in practice what will you do, so how will you observe ok? So, we have defined

the primal  residual  already, of  course this  is  the objective  function value  of a  given

solution ok. So, this is the rather the primal objective at optimality. So, as the algorithm

converges. So, the previous result states that if those conditions are satisfied that is if you

are functions are closed proper and convex.

And if it  if  the Lagrangian has an has a saddle point that is with respect to the dual

variable the objective function value always decreases, and with respect to the primal

variable values, the objective function value always increases. Then you have that there

is convergence that is the iterates will converge, but this result says what the convergence

should be so it says that as your k tends to infinity.

So, as you iterate more and more the dual the primal residual will go to 0 ok. The dual

residual, which is the s k that we have defined that, will go to 0. So, recall that s k is just

defined as this rho A transpose B z k minus z k minus z k plus 1 ok. The objective

function value f x plus g z will converge towards the optimal objective function value,

which is p star ok. And the dual variable will converge towards the optimal dual variable.

So, these are the convergence results of ADMM ok.
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So, then the question is if this is the convergence, so how should when should you stop

iterating. So, the iterations that are given to you, when should you stop those iterations.

And the  prescription  is  that  you define  a  small  number  epsilon  prime  sorry  epsilon

primal and epsilon dual. So, these are basically some tolerance values, because so just

like for any convergence of any optimization values, they may not be exactly equal to 0

ok. So, you show some tolerance values.

And whenever the norm of your primal residual is less than the primal tolerance, and the

norm of your dual residual is less than the dual tolerance value you can stop iterating

further ok. So, this is the recipe for the convergence of or for the stopping of the ADMM

iterations ok.
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Now, we come to the main idea that you now look at the so if we go back to our ADMM

ok, you see that this is an this entire thing is an optimization algorithm. But, these two

steps  are  themselves  optimization  problem ok.  So,  so this  is  a  typical  case with the

ADMM algorithm that it is called a meta optimization algorithm ok.

So, yeah so the x updates requires  solving an optimization  problem. Similarly, the z

update require solving another optimization problem ok, but as we shall see for most of

the problems that we will be looking at the z update may have a closed form solutions.

Even though it is an optimization problem, it may have a close form solution. So, hence

ADMM is a meta optimization algorithm. So, it is an optimization algorithm, which uses

other optimization algorithms as its components.
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If  your f  is  separable that  is,  if  your f  of x the original  function if  yeah. So, if  f  is

separable, then A is conformably block separable that is if that is if you are A transpose A

is block diagonal, then the x update splits into N parallel updates for x i so yeah.
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So, so we will we will explain that with an example. So, we take the example of now the

distributed optimization problem. So, if you remember, our objective was exactly of this

form ok. So, our objective was that you had to minimize summation over i is equal to 1

to M loss function of i x, this was the total loss of x ok.



Now, this was equivalent to saying you want to minimize summation over i is equal to 1

to M l i of x i subject to the constraint that all of these x i’s are equal to z ok. So, this is

what  we  have  written  here  ok.  And  if  you  see,  the  augmented  Lagrangian  for  this

problem is something like this ok. So, here the x variable is basically split into N many x

variables. 
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And if that is the case, as we shall see yeah so basically now the three steps of ADMM

become something like this that. You have your x update being split into so N x updates.

So, this is for i is equal to 1 to N ok. So, your x update is split into N x updates ok.

Your z update z is the consensus variable ok, so z is the consensus variable ok. You are z

update becomes something like this which is a close form solutions. So, remember in the

general ADMM this z was also supposed to be so this z k plus 1 was supposed to be an

optimization problem. But, it turns out that if you try to solve that optimization problems

here. If you see this if you try to so we can write here.
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So, your z k plus 1 was nothing but minimum over z, and then your L rho, and then your

x k plus 1 z y k ok. And you see the way things are ok. So, if you minimize it like this

with respect to z, you will get that you can see that it will just be the squared error. And

this will be minimized, when you get you just set z to be equal to this value.

So, you can check this just by differentiating and equating it to 0 ok. And y update is of

course  like  this  ok.  So,  this  is  your  ADMM iteration.  And  actually  you can  further

simplify this, because now what you can do is you can just substitute this z back to here

ok.
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So, if you do that if you do the substitution, what you see is that your updates, so you can

just so you can so your y update just become something like this. So, what is your y y

update now? Your y update is whatever are the updated x values ok. If you take the

average of those if you take the average of updated x values ok, and then if you take x i

minus that and then rho and at that to y k that is your y updates.

So, you have basically eliminated the z by substituting this z k plus 1 into all the updates;

so, z k and z k plus 1 into all the updates ok. So, you see that into the first you get this is

equal to 0, and hence you get this update.  And then finally, when you substitute z k

which is which becomes equal to basically x k bar, and that you substitute here you get

the modified x updates. 

So, your z is basically nothing but x bar of k ok. So, your z k becomes equal to x bar of k

ok, where x bar of k is nothing but your 1 by N summation over i is equal to 1 to N x i k

ok.  So,  for  this  kind  of  a  consensus  optimization  problem  so  for  the  consensus

optimization problem, which is this problem ok, which is this problem the updates are

something like this ok.
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So, these are the final updates ok. And the final solution is going to be z k, which is

nothing but x bar k. So, the average of all the x i’s the final solution that you will get for

the original problem. And as you can see this is very easily implemented in a distributed

setting. So, all you have to do is you have to store the y i k in the central machines. And

x 1 k like this till x N k in the machines.

And then the in the, for the first step, you have to send all the x i’s to the local this thing

is to the local machines. So, in the local machine it can compute x bar k, and then the x

bar k can be sent back to individual machine. So, from the central machine the individual

machine gets x bar k ok.

And then you have all the information to compute this objective function, because you

have the f i. So, f i is on the ith machine ok. And you have the y i k, so y i k also has to

be sent ok, but you have the y i k and you have the x bar k ok. So, then you can just

optimize with respect to x i to get x i k plus 1. And once you get x i k plus 1 here, you

can send that to the central machine to compute the x bar k plus 1 in the central machine.

And once you compute the x bar k plus 1 in the central machine, you can compute all the

y i k plus 1 in the central machine, and that you can send back, so that completes the

description of the algorithm. 
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So, we further describe, so how will you solve this or how will you use this technique to

solve  the  distributed  loss  minimization  problem.  So,  so  this  is  our  distributed  loss

minimization problems. So, this is a general form of our distributed loss minimization

problem. You have the loss function l, which is a decomposable function over this x’s ok,

and rather which is a decomposable function yeah over x’s.

And you have the regularize which is dependent only on x ok. So, basically this each part

l i of A i x i b i is the loss on the ith machine. So, this is the loss on the ith machine, and

all of the x i should be equal to z ok. This is the constraint, so that x i is equal to x z. So,

all of them are equal to z. So, this is the consensus constraint. 
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So, as we have already discussed a little bit of arithmetic shows that this is your update

equation for x i ok. So, basically this is the last part. And your u i is what is called the

scale dual variables ok. So, your u i is the scale dual variables, these are something like y

i ok. And then you can compute these as you can compute the using this formula. And

then you can just update u i k plus 1 ok. And then this is the final solution ok.
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So, this is a simple small toy problem, which is taken from Stephen Boyd’s slides ok. So,

basically let us say that this loss function is hinge loss, which is basically your l of u is



nothing but 1 minus sorry your 1 minus u the positive of this. This is nothing but max

over 1 minus u comma 0 ok.

And you have capital N is equal to 400 and small n which is the dimension. So, this is

the dimension of u so dimension of u ok. So, this is basically u’s dimension ok. And this

is the number of examples, so this is the number of examples ok. And the examples are

split into 20 groups ok, so this is the scenario. And this is the problem that we are solving

ok. 

(Refer Slide Time: 37:05)

So, you see how so each of these each of these lines is the separator or so this is a

classification problem. There are two classes; you can see that your blue circles are point

for class 1. And green crosses are points for class 2. And this is supposed to be your

optimal solution ok.

But, you have now 20 optimal solution, because you remember you have x i for each i

ok. So, and this dotted red lines are plotting the separating hyper plane. So, these are

plotting the separating hyper plane for each machine i ok. And this is the iteration 1. So,

your k is equal to 1 ok.
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And now as the iterations progress, so for example, after 5 iterations you see that your

hyper planes have all come together a little bit. So, you would remember that you are so

in  this  case  basically  you  are  if  you  recall,  your  primal  residual  is  something  was

something like A x plus B minus c. 

So, in this case, it will just be x minus z or x i minus z ok. So, for each i your primal

residual will be x i minus z ok. And you can see that your this you are this black line

corresponds to something like z, because your z is nothing but your x bar. So, your z k is

something like x bar k ok. And the question so basically you are residuals are how close

are these lines to this black line ok. And you see that they have become much more

closer. So,  you are r  k primal  residual is  actually  going down ok. And you are dual

residual is nothing but the difference between z k and z k plus 1. 
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So, you see that as the iterations are progressing your z k and z k plus 1 are roughly the

same. So, you are black line is this z ok. So, roughly they are the same, and yeah.
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So, and now you see, so all the hyper plane has converge to the black line. And the black

line between two successive iterations have also become same; so, both these residuals

sorry; so both the residuals have become 0 or very close to 0 at iteration 40 ok. So, this is

how the algorithm progresses ok. So, with that we conclude our discussion of ADMM.

And these are the references. So, the first one is the primary reference from where all the



materials have been taken. And the second one is an application that we have explored

for ADMM yeah. So, the first one is the primary reference ok.

Thank you.


