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Hello everyone, welcome to the NPTEL course 22 lecture of NPTEL course on scalable

data mining or scalable data science. And I am Prof. Sourangshu Bhattacharya from IIT,

Kharagpur. And this is today’s lecture is going to be an Alternating Direction Method of

Multipliers. 
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So, today we are first going to discuss the distributed gradient descent or rather we are

going to recall  the distributed gradient descent,  and distributed optimization problem.

And  importantly  we  are  going  to  discuss  distributed  optimization  as  an  equality

constraint problem and then followed by that we are going to discuss the precursors to

ADMM, which are some of the methods that we will discuss for solving the equality

constraint optimization problems.

And we will discuss their limitation. So, what are the limitations of this method? And

then  finally  we  will  discuss  ADMM  and  which  basically  overcome  some  of  these

limitations. And then we will also discuss an example the toy example of how to use

ADMM for a practical machine learning distributed optimization problem ok.
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So, distributed optimization.  So, so in the context  of machine learning the distribute

distributed loss minimization problem can be written like this. So, basically we have so

we have the data point x. So, our data point is x or rather x i. So, x i has all the data or

rather  sorry the data  point is u i  and v i.  So, our data point  is  u i  and v i.  And the

parameters with respect to which we are going to optimize are x. So, basically our l i of x

l i of x is the loss function, which is the function of basically x given u i and v i. So, our

loss can be decomposed like this where i i rather break down the data into clusters C j ok.

So, jth cluster or jth group we can say jth group.

And and for all the examples i in the jth group. This inner term it sums up the loss for

those data points. And then there are m groups, so there are m groups. So, the outer sum

basically sum the over the groups. Now, the thing is that maybe each of these groups or

clusters are distributed on two different machines so, then our total loss function look

something like this. 

So, the first part is the loss, which is dependent on the data. And it can be broken down

in a hierarchical manner into the loss over the a data points in a group. And then also the

total sum over of the loss over all groups. And then we add the regularize that which is

not dependent on any data point ok. So, this is a typical structure of an optimization

problem that we get in machine learning.



Now, given this structure, what will the gradient descent algorithm look like ok. So, the

gradient descent algorithm will look like this, where just like your loss is hierarchically

broken down into data  points within a group. And also the sum over all  data  points

within  the  group.  The  gradient  can  also  be  similarly  broken down ok.  So,  you  can

calculate the gradient over a group ok.

This can further be actually pushed inside ok, but for the time you can just say you want

to calculate the gradient of the loss of data points in a group. And then sum them over

and then you can get the total gradient. So, the advantage of these strategies that, you can

compute this in a gradient by just independently on each computer. And then you can

communicate it to a central computer ok. 
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So, then you can compute the total loss on gradient on the central computer by adding

over the individual  gradients of the jth groups ok.  And then you can do this update,

where your alpha can in case of gradient descent be chosen by line search or if you are

using something like mini bus stochastic gradient descent, you can use the alpha, which

is you can use alpha is equal to something like 1 by root k. So, alpha can vary with the

number of iterations. So, the problem with this is basically that this is kind of slow for

most practical problems ok.

So, and basically the reason it is slow is that is that you are not doing much computation

on the nodes. So, what you are doing is, you are just calculating the gradients on the



nodes. And then you are transferring the gradient gradient for each iteration on to the

central computers. So, you are doing lot of transferring of data onto the central computer,

and doing less amount of relatively less amount of computation in the central node ok.

So, sometimes it is also called that it is communication wise it is not very efficient ok.

So, we want to solve this problem.

So,  the  general  strategy  for  solving  this  problem will  be  that  we  want  to  do  some

optimization also on the nodes that is a few iterations maybe on each of the nodes. And

then  somehow  exchange  parameters  with  the  central  computer,  so  that  I  have  to

exchange the parameters with the central computer a less number of times, so that is the

general  idea  behind  ADMM ok,  so  but  before  going  into  ADMM we look  at  some

precursors of ADMM ok.
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So, why do we have to go into these precursors of ADMM? The reason is that you can

understand. So, so before looking at this precursor of ADMM you can understand that if

you have if you have decomposable function, which is as we have written down, which

is some over j is equal to 1 to m let us say and then l j of x.

Suppose this is our this is our this is a function plus there is some regularize the which I

am not so much bothered about at this point in time. If this is the function ok, so we want

to minimize this l j  of x on the jth computer, but then the x let us say there are two

computers let us say j and j dash.



So, then the x variable on the jth computer and the x variable on the j dashth computer

are  couple  together  ok.  So,  how do you express  this  coupling,  you can  express  this

coupling by slightly modifying this optimization problem in this manner that you instead

of writing x here you write x j, but then you add the condition or you add the constraint

rather subject to the constraint that x j equal to x j dash something like this ok. So, some

equality constraint. So, this constraint rather sorry ok, this equality constraint is what we

want to tackle. So, this is going to be our idea we will see how exactly we do it as we go

forward.
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So, basically what this brings us to is this equality constraint problem ok. So, the equality

constraint problem basically looks like this that you have to minimize f of x subject to

the constraint that A of x equal to b. And now from optimization theory as you can write

the Lagrangian, so this is the Lagrangian for this particular problem. And this is the dual

function ok, so, the dual function is basically the infimum. So, the dual function is the

Lagrangian function is, of course a function of the primal variable, and the Lagrange

multipliers, which is y.

And, now the dual function is only a function of the Lagrange multipliers. And it is the

infimum over  x a  Lagrangian  of  x comma y. And then you can also solve the dual

problem, which is maximization problem. If the primal problem is minimization problem

and the final solution is of course, is you can you can show that you can either solve it



you can solve it basically in a minimax manner. So, you can compute the you can take

the max over y l of x comma y, and you can compute the mean over x or you can do the

other way round. And in case of convex optimization problem the two are the same.
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So, the dual ascent method tries to solve this problem in this manner ok. So, it tries it

tries to do a gradient decent or it tries to do a gradient descent step for the dual problem.

So, if you if you recall the dual problem is that you have to find y, which is arg max over

y and then l of x comma y or rather sorry you this is this is rather if I were to write it like

this it is arg max over y and then infimum over or minimum over x L of x comma y.

So,  this  is  the  dual  problem  and.  So,  basically  you  have  to  compute  this  function

minimum over x L of x comma y. Another way of saying it is that you compute the x

tilde, which is the minimum over x L of x comma y k. And then you, so you once you

have computed the x tilde you substitute the x tilde in the gradient in this gradient and

then you compute the next iterate ok.

So, this results in this algorithm. So, at each step so first you randomly initialize sum y.

And then you compute the next iterate of x by solving this problem the inner problem.

And then once you have solved this inner problem you do a gradient descent steps, so

this is the gradient descent step here for the dual variable. Now, the problem with this

method is that it works only if this Lagrangian is strictly convex. In other words this



solution x k plus 1 for this problem should have a unique solution. So, otherwise what

happens is this step can have multiple solutions.

And even  though  the  Lagrangian  value  will  decrease,  because  this  step  is  having  a

multiple solution the, so the and you have no control over which solution gets chosen.

The update to the dual variable will oscillate ok. So, this is the problem with the dual

ascent method ok. And also another problem is that this should be bounded below, so it

cannot be unbounded.
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So,  a  generalization  of  this  a  dual  ascent  method  is  called  the  dual  decomposition

method,  where  the  method is  exactly  the  same except  that  instead  of  f  of  x  as  one

function you can now have f  of x as sum of many functions  ok.  So, your objective

function f of x is now is called separable ok. So, your objective function is separable.

Now, if this is the case if your objective function is separable, and then what you can do

is  you  can  as  mentioned  earlier,  you  can  write.  So,  you  can  write  the  problem  of

minimizing.  So,  we  can  write  the  problem of  minimizing  over  x  f  of  x  as  that  of

minimizing. So, these two problems become equivalent you minimize over x 1 till x N.

So, you take N variables and then you write this whole f of x again which is a sum over f

1 X 1, f 2 X 2 till f N XN.



Subject to the constraint that x 1 and also of course x is variable  and subject to the

constraint that x i is equal to x ok. So, if you have a constraint like this, then you can

write the Lagrangian function as this ok. So, this can be written as A of x i is equal to b.

So, this is in this form that A of x i is equal to b. So, you are you are L is now separable

in x. Your Lagrangian function as you can see is separable in x. So, X are the primary

primal variables and y is the dual variable. So, if that is the case then your earlier X

minimization step, it now splits into this capital N many minimization problems.
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So, your algorithm, now changes slightly. So, it is same as dual ascent except that the

first X minimization step. It is now split into N optimization steps. So, see that here what

we are doing is we are of course iterating over this whole thing, but within one iteration

we are trying to minimize this Lagrangian function ok on each computer over the local

variable X i. So, there is a local variable X i on each computer. So, I am assuming here

that i stands each i is put on one computer. And, now we are minimizing this L i of X

with respect to the previous Lagrange multiplier iterate on each computer.

 So, this can be done in parallel ok. So, once we solve this problem in parallel we can do

this  update  to  the  Lagrange  multipliers.  So,  in  this  case  the  Lagrange  number  of

Lagrange multiplier is exactly N. So, we can update these Lagrange multipliers by this

step, which is the dual ascent step or which is rather the gradient descent in the dual step

ok. So, the distributed solution is something like this that you scatter; so from a central



node. So, if this is your central node, and these are your compute nodes, then you sent y

k to all of these nodes. Then you optimize you optimize and obtained x i k plus 1 in each

of these nodes, which is again send back to the central node.

And then you compute this A i x i and you some and out update and obtained y k plus 1

in central node. And you keep going back and forth. Now, this is a very neat solution, but

all the drawbacks of dual ascent exist. So, what are the drawback drawbacks is basically

that if  your Lagrangian is does not have a unique solution.  Then this algorithm with

oscillate ok.
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.

Now, here is a solution for that oscillation problem. So, the solution for the oscillation

problem is that we add what is called the second order proximal term to the Lagrangian.

So, earlier if you remember, the Lagrangian was just this portion ok. So, the first portion

is the objective function, and the second portion is the Lagrange multiplier, which is the

penalty for the constraint violation.

Now, we add another  penalty  for  the  constraint  violation,  but  this  penalty  is  always

positive. And this is like this is A X minus b whole square. So, this will always if the

constraints are violated, then this will always be positive. So, this will always drive the

solution towards the solution, where A X is equal to b, which is the original constraint.



So, in other words we are not changing things at optimality so at optimality, this is going

to be 0, because A X is equal to b and whatever the solution for this is that will stay here.

So, minimizing in other words if we were to minimize Lagrangian what is if we were to

minimize the augmented Lagrangian, the solution will not change ok. 

Now, if this is the case ok, and we may want to do the dual ascent now, so method of

multipliers is nothing but dual ascent with this augmented Lagrangian ok. So, this is dual

ascent with augmented Lagrangian ok. So, your gradient, now changes to something like

this ok. And your x update remains of course this of course same, but your gradient, now

changes to something like this or rather the dual updates step changes to some something

like this ok.
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Why this  is  the case.  So,  you see when we are trying to solve this  problem ok, we

basically  want  two conditions  to  hold ok.  So, this  is  this  is  coming from let  us  say

something like we have discuss the KKT conditions Karush Kuhn Tucker conditions for

optimality. So, the first condition that should be satisfied is the primal feasibility ok. So,

primal feasibility basically means that the constant should be satisfied which is that A X

is equal to b.

The  second condition  that  should  be  satisfied  is  called  the  dual  feasibility  ok.  Dual

feasibility is basically that you take the gradient with respect to the dual variable ok. And

then you say that that gradient should be 0. So, if you take the gradient with rather sorry



you take  the  gradient  with respect  to  primal  variable  that  should be  0.  So,  the dual

feasibility condition comes. When the gradient with respect to dual variable is 0, or so

this is like saying gradient with respect to y L of x comma y L rho of x comma y is equal

to 0.

And this is saying gradient with respect to x L rho of x comma y equal to 0. Now, if you

put this condition here ok, so you put this condition on this that you know, so at X k plus

1 your so X k plus 1 is the solution that you get or rather y k plus 1 is the solution that

you get after doing the dual updates step.

So, let us say the problem was a dual feasible before the update, so after the updates also

it should be dual feasible ok. So, so in other words this should hold ok. And you see if

you write, so if you write if you expand L rho of x k plus 1 with respect, so basically you

know that the update is so you know that x k plus 1 is nothing but x k plus this rho of A x

k minus b. So, or let me just yeah. So, sorry this is the update for y variable.
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So,  you should have the you should have the update  like.  So,  so you are  update  is

basically that your y k plus 1 is is y k minus rho of A x k minus 1. So, if you plugin y k

from here ok, so you get so so rather if you expand the L rho and then compute the so, so

basically this is your y k plus 1 if you expand the L rho, and compute this gradient this

becomes your y k plus 1. And then, so you have this a transverse y k plus 1, which is in

the same form as your dual feasibility condition here.



So, you start with the optimality with respect to x ok. You get the dual feasibility for free

ok. So, basically that is why instead of. So, if you remember, there was a step size update

here. So actually this is a special property of method of multipliers that the step size, if

you want to ensure dual feasibility, turns out to be rho ok. So, here rho is the parameter

that you have used for this is the rho parameter that you have used for the augmented

Lagrangian.
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So, basically that is why instead of using an arbitrary step size here you use like the rho

as the step size ok. So, this describes the method of multiplier ok.
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So, now, we come to ADMM. So, basically ADMM combines both of these. So, so if we

want to step back, so now we want so method of multipliers have the advantage. So, why

do we use method of multipliers, because method of multipliers has the advantage that

your augmented Lagrangian. If we were to go back to this augmented Lagrangian, this is

always strictly convex. So, this is always strictly convex for any positive rho.

So, if you have a positive rho, this is always strictly convex, which implies that it has a

unique solution for x ok.  So,  if  you try to  minimize  the  augmented  Lagrangian,  the

solution is always unique. So, method of multipliers does not suffer from the problem of

multiple solutions ok.

And on the other hand the dual decomposition method. It actually very nicely splits into

multiple optimization problems, which can be solved in a distributed manner on different

machines  as we have already shown. And the solution can be gathered and then the

update can be made. So these are the two properties of two methods. And our objective is

to combine the good properties of both these methods.
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So, combine, so again for ok, so in some sense we should have convergence properties of

method of multiplier ok and decomposition property of dual decomposition method ok.

So, both of these should be there and that is where ADMM comes ADMM comes it. So,

ADMM has both this properties. So, how does it work?
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So, this is the updates. So, suppose so for simplicity here. So, we have described two

functions. So, your actual your actual thing maybe some over N function. So, f N x N

plus still f n x n instead we are just adding over two function for simplicity and this is the



equality constraint. So, for some values of a you can think that this will be x is equal to

Z. So, you can take A is equal to 1, B is equal to minus 1 and c is equal to 0. And this

constraint will be x is equal to z as a special case of that. So, in general ADMM can solve

both these problems ok. So, how does it work ok?
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So, as you can see even in this  case the Lagrange multiplier  rather yeah. So, so the

Lagrange multiplier is the same. So, you have the constraint. So, this is the penalty of the

or rather the Lagrangian function is the same. So, you have the penalty, so this is the

penalty term ok. This is the objective function. And this is the augmentation term. So,

this is the augmented penalty function ok. Now, the updates go like this. So, you first

update the X variable ok. So, you first update the X. So, you randomly initialize,  so

initialize randomly initialize Z k and y k ok.  So, you can for the first  step,  you can

initialize them randomly.

So, you first solve for X ok. Then once you have solved for x you solve for Z ok. So,

there is an update ordering here ok. So, first to solve for X ok, you get X k plus 1. You

plugin X k plus 1 in this Lagrangian now, and you solve for Z all the while you keep the

y  same.  And  then  you  do  basically  gradient  descent  gradient  descent  on  Lagrange

multipliers on y which are the Lagrange multipliers. So, this is your ADMM algorithm or

algorithm for that is called alternating direction method of multipliers.



So, we will see how this can be used. So, so we will see why it is not trivial to derive this

algorithm. So, you have to actually prove the convergence of this algorithm. And we will

also see how this algorithm can be actually used to solve all right a machine learning

problem, which is for or for which we will there is a optimization problem, of course.

And this problem can be solved using this ADMM method in a distributed manner in the

second part of this talk.

Thank you.


