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Hello everyone. Welcome to the 21st lecture of NPTEL course on Scalable Data Science.

I  am  Professor Sourangshu  Bhattacharya  from  Computer  Science  and  Engineering

Department at  IIT, Kharagpur.  And  today, we are  going  to  discuss  about  Stochastic

Optimization. 
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So,  in  the  first  part  of  this  lecture,  we  have  discussed  the  stochastic  optimization

problem. And we have discussed the stochastic gradient descent algorithm. And we have

described proof for the stochastic gradient descent algorithm. As to why and in what

sense does the stochastic gradient descent algorithm converge.

So, in this class, we are going to discuss about the practical aspects; like we are going to

discuss the mini-batch SGD, and the distributed SGD. And we are going to discuss some

other practical considerations while implementing SGD. And then very importantly, we

are  going  to  discuss  some very  recent  advancements  on  stochastic  gradient  descent.

Many of which are have actually led to a significant improvement in running time, and

they have also arguably led to the revolution in you know deep learning community. 
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So, this we have already discussed. So, machine learning is a stochastic optimization

problem.
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And you can solve it with stochastic gradient descent algorithm, which is this algorithm. 
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And  we  know  that  the  algorithm  converges  or  the  rather  the  loss  function  of  the

parameter or the loss of the parameter converges in the expected sense as you increase

the number of updates or epochs. 
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And this is a typical picture of convergence. So, even though normally you would look at

it and say that this is really a very oscillating sequence, but actually a in expectation. It is

converging something like this, it is going something like this. So, this is indeed how

stochastic gradient descent works ok.
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So, now what are the issues with stochastic gradient descent? So, the first issue is that the

convergence of stochastic gradient descent is very sensitive to the learning rate or this eta

that you use ok. So, you remember that in the proof, we have given two conditions for

eta. So, the first condition is that summation over so summation over t is equal to 1 to

infinity eta t squared should be finite. So, should be less than infinity ok.

And summation over t is equal to 1 to infinity eta t should be tending to infinity ok. So,

this is the condition that we have put. So, there may be, so there may be many types of

sequences, which satisfies these conditions. So, for example so 1 by t to the power let us

say so 1 by square root of t is one such sequence, which is that if you take eta, so your

sequence  of  eta  t  is  something  like  this  ok.  So,  this  sequence  satisfies  these  two

conditions, you can check that this sequence satisfies these two conditions ok. So, the

question is what type of convergence rate, do you choose. 
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So, we will come to that ok. Before we come to this so we would like to so describe what

is called the mini-batch stochastic gradient descent. So, we have seen the batch gradient

descent,  where  if  you have  let  us  say  in  examples,  you choose  all  the  examples  in

computing the gradients ok.

If you use the stochastic gradient descent algorithm that I have just described, you use

one example per iteration or one example per update ok. So, you need not so these are

two extremes, instead you can select maybe a certain constant number. So, you can select

m examples m randomly selected examples to compute the gradient at each step or at

each update. And then perform SGD ok. 

So, this version of SGD is called the mini-batch SGD. So, this is the first and you can

show that by similar arguments that this version of the SGD also converges ok. So, this is

the first improvement and it is seen that the oscillations the so if you look at the curve of

SGD, you see oscillations of this type. So, this oscillations become much less. So, with

as the number of examples  that  you use in  each mini-batch increases  the amount  of

oscillation reduces a lot ok.

So, this is one simple, but very useful trick that people used to make SGD converge

better ok. Another important  outcome of this heuristic of using m examples for each

update is that it allows for parallelization. So, you may choose these m examples from m



different servers. And then do an update or you may do update based on m different

examples from a given server ok.

So, all of these things are possible. So, there are various ways like all reduce SGD, then

there is the parameter server, which is like the centralized update, which we normally

discuss. And then there is also some kind of round robin SGD where in a round robin

fashion the  parameters  get  updated  in  each of  the  servers  ok.  So,  all  these types  of

parallelization or distributed processing is possible ok.
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So, here is one concrete example, this is also historically one of the very important step.

So, this is by Leon Bottou, it is a due to a paper in 2008 by Leon Bottou. And what he

did was, so he was so this sort of led to a resurgence or renewed interest in this algorithm

of stochastic gradient descent ok. 

So,  what  he  did is  he  took a  large  text  classification  corpus.  So,  you have  781,000

training examples, and 23,000 test examples. And you have about 50,000 features which

is the number of words in the vocabulary that we are considered ok. And, then he is

trying to  so is  the problem that  he is  trying to  solve is  to  predict  the category  of  a

documents. So, there are a certain number of categories, and he is trying to predict the

category of a document ok.
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And  so,  these  are  the  questions  basically  that  you  want  to  ask,  when  you  have

implemented  this  SGD  algorithm.  So,  is  it  successful  at  minimizing  the  objective

function ok. How quickly does SGD find the minimum objective function? And then

what is the error on a test set.

So, note that even though generally it is true that so the objective function in case of this

kind of training is typically the loss on training set. So, loss on training set ok. This may

or may not reduce the loss on test set ok, so that is another thing that depending on how

well the model generalizes.
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So, these are the running times ok. So, you see that so at that time whatever was the

standard SVM solver, that took 23,000 seconds. And there was a fast SVM solver, which

took 66 seconds to solve. And all of them have and the SGD SVM that Leon Bottou

implemented took only 1.4 seconds, this was a huge speed up ok.

And this speed up, so this speed up comes so, this is the value of the objective function

and this is the test error. So, see that it comes at almost no compromise with either the

value of the objective function or the test error ok. So, the answer was that all  three

metrics are better for SGD in solving SVM than the existing algorithm. 
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Now, this graph is on the x axis, it is showing how well the different algorithms either

SGD or a conventional SVM algorithm is able to solve the optimization problem. So, x

axis is plotting the optimization quality ok. So, this is the absolute difference between the

objective function value that you achieve and the actual objective function value ok.

And on y axis is the amount of time taken to achieve this ok. So, what you see here is

that if you want to get within let us say 10 to the power minus 4 of the actual objective

function value, then it takes almost no time ok. If you want to get within 10 to the power

minus 6, maybe it takes around let us say 10 seconds, whereas the existing algorithm

takes 30 seconds.

But, if you want very high precision, so if you want to go to 10 to the power minus 7 or

10 to the power minus 8, then the time taken increases kind of exponentially ok. So, this

increases exponentially, so it never almost, never reaches 10 to the power minus 8. So,

the  point  here  is  that  if  you want  a  reasonable  quality  solution,  then  SGD is  good.

Otherwise, you may want to go for other higher order method, which we will come to ok.
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And this is a comparison between the SGD and batch conjugate gradient descent. So,

basically the blue line here is full SGD ok, so the blue line here is full SGD. And these

are the SGD for different mini-batch sizes. So, this is for mini-batch size of 10,000, this

is mini-batch size of 30,000 and so on and so forth.

So, this is the mini-batch size of 781,000 which is something like gradient descent. So,

this curve is for a batch gradient descent batch gradient descent ok. And this curve is for

conjugate gradient descent, which is the second order method. So, the conjugate gradient

descent is known to take very few steps ok. And now the x axis here is the time in

second, and y axis is the loss on the test set ok.

So, as you can see that they achieve a reasonable loss, not a very low loss. So, this

conjugate gradient descent achieves a very low loss, but stochastic gradient descent and

different  mini-batch versions of stochastic  gradient  descent  achieve a  reasonable loss

within a small amount of time ok.
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So, like we were discussing, so we need to choose the learning rate eta. So, there are

roughly so there are two types of choices. So, one is so the learning rate is of this type

ok. So, one option is the learning rate of this type ok, where the learning rate is of this

form eta t by t plus t 0. So, it is essentially of the form 1 by t ok.

So, and then the question remains that how you how to choose eta t and t 0 ok. So, the

suggestion is that you choose t 0 such that the expected initial updates are comparable

with expected size of weights ok. So, basically the magnitude of this number and the

magnitude of this update are roughly same ok.

And you choose eta actually this should just be eta, this should not be eta t. And you

choose eta such that the oscillations do not diverge or you take a small sub sample. And

you try out various learning rates logarithmically something like 10, 1, 0.1, 0.01 and so

on and so forth. And for whichever it does not diverge, and it reduces the cost you use

that and then run on the full data set. 
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Now, the question comes that so this is the update that one has to do. Now, the update

has two components. One is the existing parameter w, and other is the gradient. Now, for

a large number of examples, what you can see is that this gradient is a sparse vector

something like this. So, the vector has almost all the increases 0, and only a few entries

which are non-zero.

So, you can store the vector something like this that the 4th entry is 1, and the 9th entry

is 5 ok. And you can also transmit the vector like this. If this is the case, you can break

the update into these two steps. So, the first step is that you update using only the loss

part not the regulariser. So, this term comes because of the regulariser ok. So, you update

it only with the loss part. And then you do further update of w as w times 1 minus eta.

So, this will basically do this kind of an update. So, this is one practical way of speeding

up the procedure.
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So,  this  is  the basically  the update.  So,  you store v, and you store s.  And then you

perform you perform the step one, which is the first update every time, because this one

depends on the examples and this changes. But, the second update is just an updation of

the scalar. So, you perform this may be with much lower frequency. 
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So,  next  question  comes  that  when  you  are  training  machine  learning  models  with

stochastic gradient descent, how do you stop. So, one way of stopping is that use you can

do early stopping with a cross validation. So, you create a small validations set. And



instead of computing the loss on loss on the entire training set, which is a very large set.

Assuming that that is why you are using SGD in the first place.

So, you create a small validation set. You compute the cost function on the validation set

and stops, when the loss stop decreasing ok. And then another way of doing the same

thing is that you extract two disjoint subsamples A and B of training data. You train on A,

and stop by validating on B. So, the number of epochs you need to you know complete

the training on A, gives you an estimate of number of epochs. Then you train on the full

data set using that many epochs, so let that be k. So, you train on the full data set using

that many epochs. 
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So, these are the practical considerations for implementing SGD in an efficient manner

ok. Now, this is just this is the same SGD algorithm that I have described. 
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Now, one of the main problems of SGD is that lets say if you have so here in this figure,

what  we have  discussed  what  we  have  describing  are  equipotential  contours  ok,  so

equipotential contours ok. So, basically all these lines here have the same value of the

objective function. So, this is one way of visualizing a function ok.

Now, you see that the function is more or less flat in this direction. And the function is

very  steeply  increasing  or  decreasing  in  this  direction.  Now, whenever  you  have  a

function with this kind of a property, what SGD does it is it oscillates a lot. This is also

property of gradient descent, it not just a stochastic gradient descent ok. So, it oscillates a

lot.

So, one way of stopping this is to use what is called a momentum term. So, let us say

your objective function is J of theta ok. So, with normal SGD if for reference, if we go

back with normal SGD, you have to so you just update, your parameter is now theta. And

you update theta using eta times gradient of J of theta at x i and x j. 

Now, here your update is of this form that you use eta times J of theta at the gradient of J

of theta, but you also store the previous gradient or rather the previous update value, and

you multiply that with coma ok. So, the whole update at time t is what is called V of t,

which is the sort of a momentum update ok. So, momentum update, because you have a

certain update coming from J of theta. And you have a certain existing update coming

from the previous updates.



So, on the axis on which the updates are consistent; so, for example, on this axis the

updates are consistent, it is always going towards the right ok. So, then on that axis the

momentum will cause the update value to increase, whereas on the axis like this axis,

where you are continuously overshooting the minimum ok, the update value will be low.

So, this causes a lot of speed up of the stochastic gradient descent. So, this is one of the

very important techniques of speeding up stochastic gradient descent. So, your update

changes in this manner. So, every time instead of doing the previous update you do the

momentum update. 

(Refer Slide Time: 26:47)

Now, another  so  based  on  this  momentum updates.  Another  very  important  type  of

update, which was discovered by Nesterov and this also has theoretical importance. But,

this  update  is  that  you  do  sort  of  a  prescient  momentum  update  that  is  you  know

beforehand that you are going to do a momentum update. So, what you do is that you

calculate  the gradient  at  a point,  where you would normally  be after  the momentum

update.

So, instead of calculating the gradient where you are currently ok, you calculate you

already know the momentum term. So, you calculate the gradient at a place where you

would be, if you were to do update only based on the momentum, and then you use that

as the corrected version of the gradient. So, instead of using the gradient you use the



corrected  version  of  the  gradient  for  updating  ok.  So,  this  is  called  the  Nesterov

accelerated gradient descent. 
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So, this was originally proposed by Nesterov and also proved by Nesterov to converge

on convex functions. But, now people have also been using this in the deep learning

setting for example for non-convex functions. 

Now, another important update is to use the second moment of the gradient vector to

estimate the magnitude of the update in a given direction. So, also sometimes called root

mean square update, because what you do is you estimate the so for each so for each

coordinate  of  the  gradient.  You  estimate  the,  you  try  to  estimate  the  square  of  the

gradient in a momentum fashion.

So, you estimate the square of the gradient square of the current gradient and estimate

the square of the existing gradient. And you use some fixed waiting of the two, you can

use also any other waiting ok. So, the main idea here is that whatever gradient you have

so if you have let us say the ith coordinate of the gradient, you divide it by square root of

this expectation of g i square or it is the same thing. So, you do it using expectation of

square root of g i square, and then in order to avoid division by 0 errors, you add epsilon.

So, this in some sense gives you a normalized update direction rather than so your update

is not, very not very part term because of the magnitude of the gradient itself. And then



you  do  this  update  step.  So,  this  is  called  this  algorithm  is  called  the  RMS  prop

algorithm. This was first described by Geoffrey Hinton in one of the courses. So, many

related algorithm have come up like Adadelta and Adagrad. 
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And then the final algorithm, which combines both the momentum and the root mean

square  updates  is  what  is  called  the  ADAM algorithm.  So,  basically  in  order  to  in

addition to storing an exponentially decaying average of past squared gradients like RMS

prop, ADAM also keeps an exponentially decaying average of past gradients ok.

So, m basically stores the exponentially decaying average of past gradients as we have

already discussed. And v stores the exponentially decaying average of past gradients.

And then you d bias them using by dividing them by 1 minus beta to the power t. And

then this is the same RMS prop update step that you apply. And this is one of the most

widely used optimizers today in deep learning community. 
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And this graph shows a comparison of many of these update algorithms. So, this so x

axis is the number of epochs and y axis is the accuracy on the validation set ok. So, as

the algorithm progresses the accuracy on the validation set increases. So, as you can see,

so these are so the blue line is for constant a constant step size. So, this is simple SGD

with constant step size. Red is SGD with exponentially decaying step size. 

And there is there is step decay Adagrad and Adadelta. So, the thing to note is that RMS

prop and ADAM reach the sort of the highest level. And though here it is not clear, but

usually ADAM reaches the, reduces the cost a bit faster than RMS prop. But, both RMS

prop and ADAM optimizer work very well in practice ok. 
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So, these are the references. So, the proof of SGD that I showed was from a paper by

Yuri Nesterov, the stochastic gradient descent algorithm itself. And the experiments by

Leon  Bottou  were  taken  from  the  MMDS  slides. And  the  material  on  the  latest

advancements on stochastic gradient descent algorithm was taken from an excellent Blog

by Sebastian Ruder.

And I would recommend that you read this for the other algorithm. So, there are some

algorithms  which  I  have  not  described like  the  Adagrad algorithm and the  Adadelta



algorithm. And these are some cutting edge things, which has happened, so for example,

ADAM was  invented  in  2015.  And  then  the  last  reference  is  for  the  graphs  or  the

comparison empirical comparison between the different optimizers. 

Thank you.


